论文部分内容阅读
VoxelNet网络模型是第一个基于点云的端对端目标检测网络,只利用点云数据来生成高精度的3D目标检测框,具有十分良好的效果。但是,VoxelNet使用完整场景的点云数据作为输入,导致耗费了更多的计算资源在背景点云数据上,而且只包含几何信息的点云对目标的识别粒度较低,在较复杂的场景中容易出现误检测和漏检测。针对这些问题对VoxelNet进行了改进,在VoxelNet模型中加入视锥体候选区。首先,通过RGB前视图对感兴趣目标进行定位;然后,将目标2D位置升维至空间视锥体,在点云中提取目标视锥体候选区,