论文部分内容阅读
针对在噪声环境下的说话人识别系统,做了两点改进.第一,为了提高系统的鲁棒性,通过不同尺度的小波基,把含有噪声的信号分解于不同频段中,然后在各个频段分别通过TEO(Teager能量算子)去噪.针对说话人识别的特点,在小波重构时对各小波系数进行了加权处理.再把各个频段的输出通过小波重构恢复信号.最后通过Mel滤波器组把小波系数转换成MFCC.第二,为了进一步提高识别性能和训练速度,在识别阶段采用了改进的OGMM(正交高斯混合模型),即把正交变换改到EM算法之前进行,这样就不必要在EM迭代过程中每次都进行正交运