论文部分内容阅读
利用SAR图像的Hu不变矩,仿射不变矩,以及Zernike不变矩,通过调整学习因子后的PSO对SVM进行优化,提出了基于改进PSO-SVM的SAR图像分类识别算法。该方法主要调节PSO的异步学习因子,加强粒子的学习能力,在算法性能上不仅减小粒子陷入局部最优的概率,而且能有效提高算法的收敛性。最后,对SAR图像进行分类识别实验,结果表明:该算法比其他算法识别率显著提高。