论文部分内容阅读
根据离心泵故障诊断的特点,提出运用小波包分解、重构技术进行特征提取,运用模糊神经网络和D—S证据理论对离心泵故障进行融合诊断的方法。首先利用小波包分析方法,将离心泵上测得的位移和加速度振动信号进行预处理,统一转换成故障征兆的特征向量值;其次,建立2层子模糊神经网络的拓扑结构,形成输入征兆与故障论域的映射关系,从而得到2层模糊神经网络的训练样本,对各网络进行成功训练后,利用模糊神经网络实现2层子网络的诊断并得到中间诊断结果;然后,将模糊神经网络诊断结果作为对各种故障模式的基本概率分配值,利用D—S证据理论,