论文部分内容阅读
油井功图是油井工作状态分析和故障诊断的重要依据,深度学习为油井功图的识别提供了有效手段,针对合理的深度神经网络架构的选择问题,构建了一个用于油井故障诊断的大型功图数据集,提出一种基于改进GoogLeNet网络结构的油井故障识别方法,并对深度神经网络的结构、激活函数、归一化层、训练方法、学习率等重要参数对识别精度和训练时间的影响进行了详细的分析.实验表明,相对于广泛使用的LeNet、ResNet和基本GoogLeNet等网络模型,提出的改进GoogLeNet网络模型有着更高的准确率;同时相对于基本Go