论文部分内容阅读
目的由于背景的复杂性,光照的多变性以及目标的相关性等因素的影响,使得多目标跟踪算法的鲁棒性相对较差。目前,在多目标跟踪问题中面临的主要挑战包括:遮挡、误检、目标运动的复杂性以及由于目标具有相似的外观特征所引起的模糊性。针对以上问题,提出一种基于全局多极团的分层关联多目标跟踪算法。方法该方法以数据关联中的全局关联为依托,基于分层和网络流思想,跟踪采用两层框架,每一层中均利用较短的轨迹片段形成更长的轨迹,根据网络流思想,首先构建网络的无向图,其中无向图的结点是由几个轨迹片段构成的,无向图权值的确定是利用