HOXA11-AS aggravates microglia-induced neuroinflammation after traumatic brain injury

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:jeep_lee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Long noncoding RNAs (lncRNAs) participate in many pathophysiological processes after traumatic brain injury by mediating neuroinflammation and apoptosis. Homeobox A11 antisense RNA (HOXA11-AS) is a member of the lncRNA family that has been reported to participate in many inflammatory reactions; however, its role in traumatic brain injury remains unclear. In this study, we established rat models of traumatic brain injury using a weight-drop hitting device and injected LV-HOXA11-AS into the right lateral ventricle 2 weeks before modeling. The results revealed that overexpression of HOXA11-AS aggravated neurological deficits in traumatic brain injury rats, increased brain edema and apoptosis, promoted the secretion of proinflammatory factors interleukin-1β, interleukin-6, and tumor necrosis factor α, and promoted the activation of astrocytes and microglia. Microglia were treated with 100 ng/mL lipopolysaccharide for 24 hours to establish in vitro cell models, and then transfected with pcDNA-HOXA11-AS, miR-124-3p mimic, or sh-MDK. The results revealed that HOXA11-AS inhibited miR-124-3p expression and boosted MDK expression and TLR4-nuclear factor-κB pathway activation. Furthermore, lipopolysaccharide enhanced potent microglia-induced inflammatory responses in astrocytes. Forced overexpression of miR-124-3p or downregulating MDK repressed microglial activation and the inflammatory response of astrocytes. However, the miR-124-3p-mediated anti-inflammatory effects were reversed by HOXA11-AS. These findings suggest that HOXA11-AS can aggravate neuroinflammation after traumatic brain injury by modulating the miR- 124-3p-MDK axis. This study was approved by the Animal Protection and Use Committee of Southwest Medical University (approval No. SMU-2019-042) on February 4, 2019.
其他文献
Studies have shown that downregulation of nuclear-enriched autosomal transcript 1 (Neat1) may adversely affect the recovery of nerve function and the increased loss of hippocampal neurons in mice. Whether Neat1 has protective or inhibitory effects on neur
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore, investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the mo
Lower extremity nerve transposition repair has become an important treatment strategy for peripheral nerve injury; however, brain changes caused by this surgical procedure remain unclear. In this study, the distal stump of the right sciatic nerve in a rat
In recent years, the increase of psychopathological disorders in the population has become a health emergency, leading to a great effort to understand psychological vulnerability mechanisms. In this scenario, the role of the autonomic nervous system (ANS)
Clinically, peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries. Most surgical concepts, however, have investigated nerve reconstructions in adult animal models. The immature neuromuscular system reac
Body weight-supported treadmill training with the voluntary driven exoskeleton (VDE-BWSTT) has been shown to improve the gait function of patients with chronic spinal cord injury. However, little is known whether VDE-BWSTT can effectively improve the trun
Excess extracellular glutamate leads to excitotoxicity, which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors (NMDARs). Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders
Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases. However, the mechanism behind the neuroprotective effects rem
Ghrelin is a neuropeptide that has various physiological functions and has been demonstrated to be neuroprotective in a number of neurological disease models. However, the underlying mechanisms of ghrelin in Parkinson\'s disease remain largely unexplore
MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis.