【摘 要】
:
近年来,随着3D打印技术逐渐成熟化与商业化,这种新兴制造技术开始应用于吸波材料的设计与制备中.本工作从3D打印频率选择表面类和超材料类吸波材料、3D打印蜂窝类吸波材料、3D打印陶瓷类吸波材料和3D打印其他吸波材料等几个方面综述了3D打印技术在微波吸收材料制备方面的研究进展,对3D打印技术在微波吸收材料制造中存在的打印材料局限性、材料力学性能缺乏、微观结构的测试分析等问题进行了阐述,同时对3D打印技术在微波吸收材料制造领域未来的发展趋势,如小型化、多功能、智能化也进行了展望.
【机 构】
:
中国航发北京航空材料研究院, 北京 100095;中国科学院力学研究所, 北京 100190
论文部分内容阅读
近年来,随着3D打印技术逐渐成熟化与商业化,这种新兴制造技术开始应用于吸波材料的设计与制备中.本工作从3D打印频率选择表面类和超材料类吸波材料、3D打印蜂窝类吸波材料、3D打印陶瓷类吸波材料和3D打印其他吸波材料等几个方面综述了3D打印技术在微波吸收材料制备方面的研究进展,对3D打印技术在微波吸收材料制造中存在的打印材料局限性、材料力学性能缺乏、微观结构的测试分析等问题进行了阐述,同时对3D打印技术在微波吸收材料制造领域未来的发展趋势,如小型化、多功能、智能化也进行了展望.
其他文献
Rootstocks have a significant influence on adaptation to biotic and abiotic stress conditions and quality of fruit. So, choice of rootstock for a specific growing region is an important decision for a grower to make when establishing a commercial citrus o
基于传统制造技术的“经典”结构质量大、疲劳薄弱部位多,难以满足未来战机的研制需求.基于增材制造技术特征优势开发的创新结构(三维承载整体结构、仿生构型结构、梯度金属结构、微桁架点阵结构)突破传统结构的束缚,具有轻量化、长寿命、低成本等特征,可大幅度提升机体平台品质,为未来新型战机研制提供有效的技术途径.本文以燃油管接头、环形散热器、三维框梁整体结构为例,阐述增材新型结构设计制造一体化开发全过程;对比原传统制造方案,可取得大幅度减重、成品率提升、疲劳薄弱部位减少等显著效益.此外,还探讨了光纤传感、建筑工程结构
Tree peony has nine wild species, but the evolutionary relationship of them is still unclear. Here, a total of 274 specimens from 22 natural populations of nine wild species were collected, and their genetic diversity and similarity was analyzed based on
采用一系列的微观组织观察与力学性能测试相结合的实验方法,研究喷射成形Al-Cu-Li合金在形变热处理过程中的微观组织演变以及力学性能.结果表明:喷射成形态铝锂合金中晶粒为典型的等轴晶;合金晶界处的粗大结晶相为Al7Cu2Fe相,晶粒内部细长的结晶相为AlCu相;经均匀化处理后,合金中晶界宽度减小且晶内元素分布趋于均匀;合金中只有少量呈块状的Al7Cu2Fe相和点状的AlCu相和AlZr相未溶解;固溶处理后合金晶粒组织仍然为等轴晶,且合金中有呈弥散分布的纳米级的第二相(β′相和δ′相)析出;与直接人工时效处
固体推进剂是火箭、导弹的重要动力源,其性能提高对提升导弹武器的作战能力具有重要意义.3D打印技术作为一项备受关注的先进制造技术,能够完成传统制造工艺难以达到的高精度、高复杂度的器件制造,解决传统固体推进剂浇注工艺难以解决的混料不均匀、产品一致性差、安全性低等问题,在固体推进剂制造领域具备广阔的前景.目前3D打印制备固体推进剂相关研究开展缓慢的原因主要是面临安全保障和工艺瓶颈两大难题.针对固体推进剂3D打印的安全性问题,将固体推进剂3D打印及其相关工作分成了部分含能组分3D打印、混合推进剂3D打印以及固体推
在Gleeble-1500D热模拟试验机上对镍基高温合金GH4133B进行变形温度为940~1060?℃,应变速率为0.001~1?s?1,变形量为50%的热模拟压缩实验,并对不同工艺参数下的变形试样进行微观组织观察.结合Arrhenius双曲正弦型方程并引入Zener-Hollomon参数,构建该合金热变形的本构模型,绘制热加工图.获得该合金的热变形激活能为448?kJ/mol,在温度为1020?℃,应变速率为1?s?1时,功率耗散达到峰值.基于本构模型的建立和热加工图的绘制等热模拟压缩研究结果和微观组
为研究温度对复合材料吸湿扩散行为的影响,开展单向玻璃纤维/环氧复合材料板在35?℃、50?℃、70?℃下的吸湿实验,并用DMA分析复合材料的储能模量和玻璃化转变温度(Tg)变化,用FTIR分析复合材料官能团变化.结果表明:温度为35?℃和50?℃时,复合材料的吸湿扩散行为可用Fick模型描述,采用Fick三维公式可拟合得到复合材料的三维扩散系数.温度为70?℃时,复合材料的吸湿扩散行为可用Fick-松弛耦合模型描述.饱和吸湿复合材料的Tg随吸湿实验温度的升高而增大,在70?℃时复合材料出现降解和物理老化,
纳米纤维素源自植物纤维,具有较好的力学性能.使用化学预处理结合机械分离法从木浆原材料中提取纳米纤维素,研究机械研磨时间对纤维素结构形态的影响.对得到的纳米纤维素悬浮液进行冷冻干燥处理,可获得结构疏松的三维网状纳米纤维素薄膜.使用水溶性环氧对纳米纤维素进行表面改性,降低纳米纤维素的亲水性,可有效改善纳米纤维素与环氧树脂间的界面结合.将纳米纤维素薄膜加入碳纤维复合材料中,以改善碳纤维增强复合材料阻尼性能,使用动态力学分析法测试损耗因子,评估复合材料的阻尼性能.结果表明:纳米纤维素的加入可以小幅提高碳纤维复合材
半固化Z-pin作为泡沫夹层的Z向增强棒,可获得质轻高强的泡沫夹层,被广泛应用于航天器外壳,以实现局部高承载和抗高空电磁辐射.本研究设计出一种新型K-Cor泡沫夹层结构,探讨不同固化度的Z-pin对泡沫夹层的增强机理.采用NHZP-1型双马树脂拉挤成型半固化态Z-pin,将Z-pin植入Rohacell-51WF泡沫基芯,遴选5429/HT7双马单向预浸料作为蒙皮,通过热压工艺来整体成型.结果表明:固化度为45.59%的Z-pin在热压过程中与蒙皮面板发生了交联-共固化反应,夹层结构的整体性得到显著提高;
对明胶鸟弹撞击复合材料蜂窝夹芯平板过程进行数值模拟研究,探究复合材料面板、蜂窝芯以及明胶鸟弹的建模方法,研究复合材料面板不同铺层方式以及蜂窝芯高度的变化对夹芯平板的抗鸟撞能力及吸能效果的影响.结果表明:数值模拟结果与实验结果有良好的一致性;冲击能量部分被鸟弹自身破坏所吸收,部分继续储存在鸟弹未完全破碎的残余部分中,其余能量则被平板以结构变形和损伤破坏的形式吸收;前面板纤维铺层方式为±45°的夹芯平板比±90°的夹芯平板吸收鸟撞冲击的能量多;随着蜂窝芯高度的增加,夹芯平板冲击后的变形量减少,平板内能变化减小