Negligible oxygen vacancies,low critical current density,electric-field modulation,in-plane anisotro

来源 :稀有金属(英文版) | 被引量 : 0次 | 上传用户:colala2001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The emerging Ni-based superconducting oxide thin films are rather intriguing to the entire condensed matter physics.Here,we report some brief experimental results on transport measurements for a 14-nm-thick superconducting Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure with an onset transition temperature of~9.5 K.Photoluminescence measurements reveal that there is negligible oxygen vacancy creation in the SrTiO3 substrate during thin-film deposition and post chemical reduction for the Nd0.8Sr0.2NiO2/SrTiO3 heterostructure.It was found that the critical current density of the Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure is rela-tively small,~4×103 A·cm-2.Although the surface steps of SrTiO3 substrates lead to an anisotropy for in-plane resistivity,the superconducting transition temperatures are almost the same.The out-of-plane magnetotransport mea-surements yield an upper critical field of~11.4 T and an estimated in-plane Ginzburg-Landau coherence length of~5.4 nm.High-field magnetotransport measurements up to 50 T reveal anisotropic critical fields at 1.8 K for three different measurement geometries and a complicated Hall effect.An electric field applied via the SrTiO3 sub-strate slightly varies the superconducting transition temperature.These experimental results could be useful for this rapidly developing field.
其他文献
The popularity of lithium-sulfur batteries has been increasing gradually due to their ultrahigh theoretical specific capacity and energy density.Nevertheless,they also have lots of drawbacks to be overcome,such as poor conductivity,severe volume expansion
The microstructure of 2624-T39 aluminum alloy was analyzed by means of metallographic(OM),scanning electron microscope(SEM)and transmission electron microscope(TEM).The effects of different microstructure characteristics on the tensile properties and fati
Bipolar diffusion appeared at high temperature leads to the performance deterioration of thermoelectric(TE)materials,and TE materials with large band gaps have high intrinsic excitation temperature,which is important for high-temperature application.Previ
Noncollinear antiferromagnetic Mn3Sn films have received much attention due to their potential appli-cations in antiferromagnetic spintronic devices.In this work,single-phase polycrystalline antiferromagnetic Mn3Sn thin films were successfully prepared by
Two-dimensional(2D)few-layer VSe2,V1-xFexSe2 nanosheets have been synthesized by a high-temperature organic solution-phase method.The thickness of VSe2 nanosheets can be tuned from 12 to 5 layers by decreasing the precursor concentrations.The few-layer VS
Magnetic and magnetocaloric properties of HoFe1-xCoxAl(x=0,0.3)were investigated.Both HoFeAl and HoFe0.7Co0.3Al undergo a second-order fer-romagnetic(FIM)to paramagnetic(PM)transition at Curie temperatures(TC)of 87 and 82 K,respectively.The magnetocaloric
The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicating the occurrence of a liquid-state ph
Developing efficient oxygen evolution reaction(OER)electrocatalysts such as transition metal sulfides(TMSs)is of great importance to advance renewable hydrogen fuel toward further practical applications.Herein,NiCoS2 nanoparticles well decorated on double
The effect of heat treatment on microstructure and tensile properties of as-cast Al0.5CoCrFeNi high-en-tropy alloy was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM)equipped with energy-dispersive spectroscopy(EDS),and tensile te