论文部分内容阅读
针对传统的A/D值转换物理量回归方法中存在表达不统一、动态适应性弱和在线非线性校正能力不足等问题,尝试将机器学习的ELM网络引入到该应用中。在分析A/D值转换物理量回归的知识要素基础上,依托ELM网络的非线性映射能力,提出利用遗传算法优化ELM网络,并利用其实现统一数学表达的A/D值转换物理量回归方法。实际应用表明,该方法对物理量回归问题可实现统一的数学模型表达,泛化性好,且非线性校正能力强,实现了各类A/D值转换物理量回归应用。