高频环行器打火原因的分析

来源 :高能物理与核物理 | 被引量 : 0次 | 上传用户:anglelc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
合肥光源(HLS)储存环高频系统环行器在工作中出现了两种形式的打火——谐波打火和束流丢失打火,谐波打火的原因已经找到并予以解决,但丢束打火的机制尚未明确.文中描述了丢束后高频系统的响应过程,分析了一些可能造成环行器打火的因素.为了防止环行器打火受损,建立了快速联锁保护电路,该电路在历次打火中成功地保护了环行器. Hefei light source (HLS) storage ring high-frequency system circulator appeared in the work of two forms of ignition - harmonic ignition and beam loss ignition, the cause of harmonic ignition has been found and resolved, but lost beam The mechanism of sparking is not yet clear.In this paper, the response process of high frequency system after beam dropping is described, and some factors that may cause ignition of the circulator are analyzed.In order to prevent the torch from damaging, a fast interlock protection circuit is established The circuit successfully protected the circulator in all previous sparks.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为满足41Ca生物示踪样品测量的需要,在北京HI-13串列加速器质谱(Accelerator Mass Spec- trometry,AMS)系统上建立了以CaF2为靶样的41Ca AMS分析方法.生物样品和41Ca标准样品
For a GMANOVA-MANOVA model with normal error: Y = XB1Z1T + B2Z2T +E, E ~ Nq×n(0, In(×) ∑), the present paper is devoted to the study of distribution o
We study the Gross conjecture for the cyclotomic function field extension k(∧f)/k where k = Fq(t) is the rational function field and f is a monic polynomial in
We construct an unconditional basis in the Banach space Lp(Ω, ρ) for p > 1 by using the refinement equation and the basic operation of translation and scale, w
本文通过对荣华二采区10
A near infrared (NIR) electrochromic attenuator based on a dinuclear ruthenium complex and polycrystalline tungsten oxide was fabricated and characterized. The
离子迁移率探测器(Ion Mobility Spectrometry,IMS)在大气环境下,可以直接对一些物质的分子进行分析,尤其是可实现对爆炸物品和毒品物质分子的在线检测分析,显示出它广泛的应
This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidatio
In this paper, we investigate the persistence of invariant tori for the nearly integrable Hamiltonian system H(x, y) =h(y) + εp((x), y) + ε2Q(x, (y)), whereh(