论文部分内容阅读
针对实际中存在的各类别样本错分造成不同危害程度的分类问题,提出了一种基于属性加权的代价敏感支持向量机分类算法,即在计算各个样本特征属性对分类的重要度之后,对相应的属性进行重要度加权,所得的数据用于训练和测试代价敏感支持向量机。数值实验的结果表明,该方法提高了误分代价高的类别的分类精度,同时属性重要度的引入提高了分类器的整体分类性能。该方法对错分代价不对称的数据分类问题具有重要的现实意义。