论文部分内容阅读
人工蜂群算法(Artificial Bee Colony,ABC)具有操作简单、控制参数少及鲁棒性强等特点,已成为群体智能领域的研究热点之一,但其仍然存在收敛速度慢、易陷入局部最优的问题。针对这些问题,提出了一种改进的人工蜂群算法(Quick Self—Adaptive Artifieial Bee Colony,QAABC)。首先,对人工蜂群算法的选择策略和搜索策略进行改进,以提高算法的收敛速度和优化精度;其次,对超边界的个体进行一次有效变异,增强种群的多样性。最后,将本文算法与其他两种算法(标准ABC