基于深层卷积神经网络近视性黄斑病变筛查系统的研究

来源 :中华实验眼科杂志 | 被引量 : 0次 | 上传用户:hls123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的

研究一种基于深层卷积神经网络(DCNN)全自动近视性黄斑病变(MMD)筛查及其严重程度评估系统。

方法

收集安徽省第二人民医院6 068张眼底图像构建训练集,并选取公开的眼底图像数据集构建测试集。对眼底图像进行预处理及扩增、MMD病变等级标注、数据清洗。构建全自动MMD筛查系统,该系统由两级网络结构组成,第一级网络结构用于识别MMD是否存在,第二级网络结构用于判断MMD病变的严重等级。比较VGG-16、ResNet50、Inception-v3和Densenet这4种常用的DCNN方法在MMD筛查及严重程度识别任务中的准确率、特异性、敏感度、精确率、F1值、曲线下面积(AUC)、Kappa系数性能。

结果

Densenet网络模型在MMD筛查任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.898、0.918、0.919、0.908和0.962。Inception-v3网络模型在MMD严重程度识别任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.839、0.952、0.952、0.892和0.965。可视化结果显示,本研究所采用的网络结构模型可自动学习MMD严重等级判断的临床特征,准确识别弥漫性和局灶性脉络膜萎缩区域。

结论

基于DCNN的眼底图像MMD筛查方法可自动化提取MMD的有效特征,并准确进行MMD筛查及其严重等级判断,可有效辅助临床。

其他文献
目的:研究硫酸镁联合硝苯地平和酚妥拉明治疗妊高症的临床效果.方法:选择我院2019年4月至2020年4月间收治的68例妊高症患者作为研究对象,根据用药的差异分为观察组和对照组,