论文部分内容阅读
目的
研究一种基于深层卷积神经网络(DCNN)全自动近视性黄斑病变(MMD)筛查及其严重程度评估系统。
方法收集安徽省第二人民医院6 068张眼底图像构建训练集,并选取公开的眼底图像数据集构建测试集。对眼底图像进行预处理及扩增、MMD病变等级标注、数据清洗。构建全自动MMD筛查系统,该系统由两级网络结构组成,第一级网络结构用于识别MMD是否存在,第二级网络结构用于判断MMD病变的严重等级。比较VGG-16、ResNet50、Inception-v3和Densenet这4种常用的DCNN方法在MMD筛查及严重程度识别任务中的准确率、特异性、敏感度、精确率、F1值、曲线下面积(AUC)、Kappa系数性能。
结果Densenet网络模型在MMD筛查任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.898、0.918、0.919、0.908和0.962。Inception-v3网络模型在MMD严重程度识别任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.839、0.952、0.952、0.892和0.965。可视化结果显示,本研究所采用的网络结构模型可自动学习MMD严重等级判断的临床特征,准确识别弥漫性和局灶性脉络膜萎缩区域。
结论基于DCNN的眼底图像MMD筛查方法可自动化提取MMD的有效特征,并准确进行MMD筛查及其严重等级判断,可有效辅助临床。