论文部分内容阅读
支持向量机(support vector machines,sVM)的分类精度和泛化能力会受到核函数及其工作参数的影响,传统的核函数参数选择方法缺乏理论支持,花费的时间较多,效果也不一定理想。针对此问题,提出一种基于半定规划的SVM模型,利用半定规划来判别一组给定的核函数工作参数是否有效,并能用有效的核函数工作参数组合计算出更优的核矩阵,提高SVM模型的分类精度。在UCI数据集上的实验结果表明,用此方法判别核函数工作参数是可行的,所组合出的半定规划SVM模型的泛化能力优于传统的SVM模型,并且异构核半定规