论文部分内容阅读
摘要: 总结了不同类型纳米材料对藻华控制的作用机制最新研究进展, 系统分析了环境因子对纳米材料调控营养盐迁移转化以及细胞毒性过程的影响. 并在此基础上对纳米材料的固定化研究提出展望, 以期实现纳米材料功能化和对其环境风险的精确管控, 为藻华治理提供新的解决思路.
关键词: 纳米材料; 藻华; 营养盐; 细胞毒性; 固定化
中图分类号: X522 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.011
A review of applications and research progress on the use of nanoparticles for the inhibition of harmful algal bloom
YUAN Yuxin1,2,3,4, LIU Jiamin1,2,3,4, PAN Ling1,2,3,4, WANG Lihong1,2,3,4, ZHANG Xueli1,2,3,4, HUANG Minsheng1,2,3,4
(1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2. Institute of EcoChongming, Shanghai 202162, China; 3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241; 4. Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area (Ministry of Natural Resources), Shanghai 200062, China)
Abstract: This review summarizes the latest research progress on the inhibition mechanism of different nanoparticles on algal bloom. We systematically analyze the influence of environmental factors on migration and transformation of nutrients and the cytotoxicity process regulated by nanoparticles. The future prospects for the immobilization of nanoparticles are explored, and the paper proposes ideas to realize the functional performance of nanomaterials while controlling environmental risks. This research sheds light on new strategies for the inhibition of algal bloom.
Keywords: nanoparticles; harmful algal bloom; nutrients; cytotoxicity; immobilization
0 引 言
由于人类活动的干扰, 世界范围内的水体—自然水体(河湖库等)、功能水体(景观、养殖水体等)以及进行生态修复的污染水体都部分呈现富营养化状态. 富营养化水体中的营养盐浓度远远超出微藻的生长所需, 大型丝状藻更是可以在贫营养水体中滋生, 这就导致了藻华的频繁发生[1]. 藻华及其衍生出的次生灾害会对水环境乃至整个水生生态系统造成严重破坏, 使生态安全和饮用水安全受到威胁, 因此, 藻华问题仍然是水环境治理的重点问题.
纳米材料的研制及应用为控制藻华提供了新的理论和技术支持. 相比于传统尺寸的粒子, 纳米粒子因其纳米级的尺寸与反应物接触更加充分, 使反应更加高效. 与传统治理手段相比, 利用纳米材料控制藻华可以极大地减少材料投加量, 降低经济成本, 减少二次污染风险. 然而, 这些性质也能够使纳米材料在水环境中的迁移转化过程愈加复杂, 并且可以通过生物地球化学循环进入生物体内富集[2].同时, 納米材料的流失给回收工作增加了难度, 造成资源浪费和生态安全隐患. 因此, 如何在不影响功能的前提下对纳米材料进行有效固定成为亟待解决的问题.
本文分析了近年来纳米材料在藻华控制方面的研究成果, 分别从作用机制和影响因素两个方面进行综述: 一方面是不同纳米材料对营养盐和藻细胞的作用机制, 另一方面是影响纳米粒子效能的环境暴露因子. 此外, 对纳米材料的固定提出展望, 以期实现对纳米材料功能和环境风险的精确管控, 为藻华治理提供新的思路.
1 纳米材料控制藻华的途径藻华的产生是藻类和氮磷营养盐相互作用的结果, 主要是藻类从无到有, 再由盛转衰, 最终沉降分解; 营养盐由水体进入藻体, 参与藻体整个生命周期最终又回到水体的过程. 藻华的成因主要集中在3个方面: 营养盐因子、 生物因子和环境因子[3]. 纳米材料对藻华的控制主要通过调控营养盐和生物因子两个方面实现对藻华的控制, 故从营养盐因子限制和藻细胞抑制两个方面进行综述. [ 2 ]SHEVLIN D, O’BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes [J]. Sci Total Environ, 2018, 621: 1033-1046.
[ 3 ]DONAGHAY P L, OSBORN T R. Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts [J]. Limnology and Oceanography, 1997, 42(5): 1283-1296.
[ 4 ]GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? [J]. Limnology and Oceanography, 2000, 45(6): 1213-1223.
[ 5 ]杭嘉祥, 李法云, 梁晶, 等. 鎂改性芦苇生物炭对水环境中磷酸盐的吸附特性 [J]. 生态环境学报, 2020, 29(6): 1235-1244.
[ 6 ]SHIN J, LEE Y G, LEE S H, et al. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds [J]. Journal of Hazardous Materials, 2020, 400: 102-123.
[ 7 ]ZHU D C, CHEN Y Q, YANG H P, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution [J]. Chemosphere, 2020, 247: 125847.
[ 8 ]曹丹. 绿色合成纳米Fe3O4的改性及用于水中氨氮和磷的去除 [D]. 福州: 福建师范大学, 2016.
[ 9 ]王慧. 铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究 [D]. 武汉: 华中农业大学, 2015.
[10]ACELAS N Y, MARTIN B D, LOPEZ D, et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media [J]. Chemosphere, 2015, 119: 1353-1360.
[11]刘婷娇. 镁铁类水滑石去除水中磷和藻及其资源化利用 [D]. 湖南 湘潭: 湘潭大学, 2019.
[12]卢松花. 水体中共存组分对U(Ⅵ)在钛酸盐材料上的作用机制影响 [D]. 合肥: 中国科学技术大学, 2019.
[13]李元梓. 负载镧复合纳米材料的制备及其用于水体除磷性能研究 [D]. 南京: 南京理工大学, 2019.
[14]贺银海. 沸石同步脱氮除磷功能调控及机理研究 [D]. 北京: 北京科技大学, 2018.
[15]PERLOVA O V, DZYAZKO Y S, PALCHIK A V, et al. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(Ⅵ) compounds from water [J]. Applied Nanoscience, 2020, 10(12): 4591-4602.
[16]XU Q Y, LI W P, MA L, et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite [J]. Science of the Total Environment, 2020, 703(9): 135002.
[17]KOH K Y, ZHANG S, CHEN J P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance [J]. Chemical Engineering Journal, 2020, 380: 122153.
[18]SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles [J]. Water Research, 2013, 47(14): 5018-5026. [19]WU K, LI Y, LIU T, et al. Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite [J]. Environmental Science and Pollution Research, 2019, 26(17): 17632-17643.
[20]TARN D, ASHLEY C E, XUE M, et al. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility [J]. Accounts of Chemical Research, 2013, 46(3): 792-801.
[21]BEIGY M R, RASEKH B, YAZDIAN F, et al. High nitrate removal by starch-stabilized Fe-0 nanoparticles in aqueous solution in a controlled system [J]. Engineering in Life Sciences, 2018, 18(3): 187-195.
[22]马静. 生物炭负载纳米零价铁对地下水硝酸盐氮去除及氮气选择性转化性能研究 [D]. 西安: 西北大学, 2019.
[23]DAS R K, WANG Y, VASILYEVA S V, et al. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons [J]. Acs Nano, 2014, 8(8): 8447-8456.
[24]张婉. 纳米氧化锌及其复合材料光催化去除水中低浓度氨氮研究 [D]. 南京: 南京理工大学, 2017.
[25]CHEN Y F, WANG Q, ZHAO S, et al. Removal of nutrients and emission of nitrous oxide during simultaneous nitrification, denitrification and phosphorus removal process with metal ions addition [J]. International Biodeterioration & Biodegradation, 2019, 142: 143-150.
[26]MENG X Y, CHEN Z F, WANG C, et al. Development of a three-dimensional electrochemical system using a blue TiO2/SnO2-Sb2O3 anode for treating low-ionic-strength wastewater [J]. Environmental Science & Technology, 2019, 53(23): 13784-13793.
[27]AMATERZ E, TARA A, BOUDDOUCH A, et al. Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B [J]. Journal of Applied Electrochemistry, 2020, 50(5): 569-581.
[28]ZHANG S H, YOU J P, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review [J]. Chemical Engineering Journal, 2018, 334: 2625-2637.
[29]WANG Y, FU W, XUE P. Degradation of trace oil in water using magnetic immobilized microorganism [J]. Chemical Engineering(China), 2017, 45(9): 7-12.
[30]LIU S Q, WANG C, HOU J, et al. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors [J]. Water Research, 2020, 171: 115436.
[31]ZHAO J, DAI Y H, WANG Z Y, et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: Importance of heteroaggregation [J]. Environmental Science & Technology, 2018, 52(22): 13448-13456.
[32]賈云婷. 磁性MOFs纳米材料的制备及除藻特性研究 [D]. 石家庄: 河北科技大学, 2019. [33]REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae [J]. Toxicology Reports, 2019(6): 1309-1313.
[34]王雅学. 纳米Fe2O3与四环素对羊角月牙藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019.
[35]WANG D X, AO Y H, WANG P F. Effective inactivation of microcystis aeruginosa by a novel Z-scheme composite photocatalyst under visible light irradiation [J]. Science of the Total Environment, 2020, 746: 141149.
[36]武鹏鹏. Nano TiO2和土霉素对斜生栅藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019.
[37]GAO X, ZHOU K, ZHANG L, et al. Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO2 nanoparticles [J]. Environmental Science: Nano, 2018, 5(3): 720-729.
[38]陈喜. 水环境中纳米银颗粒与莱茵衣藻的交互作用研究 [D]. 山东 泰安: 山东农业大学, 2019.
[39]FATHI P, SADEGHI G, HOSSEINI M J, et al. Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid [J]. Sn Applied Sciences, 2020, 2(2): 11.
[40]马偲. 水中纳米颗粒的自团聚及与藻细胞的异团聚 [D]. 杭州: 浙江大学, 2014.
[41]MUNK M, BRANDAO H M, NOWAK S, et al. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae [J]. Ecotoxicology and Environmental Safety, 2015, 122: 399-405.
[42]曹丽, 吕天平, 贺京城, 等. 纳米TiO2光催化去除水华藻类的研究进展 [J]. 工业催化, 2019, 27(4): 17-21.
[43]程晓燕. 纳米BiOBr对羊角月牙藻的毒性效应研究 [D]. 河南 南阳: 南阳师范学院, 2019.
[44]YANG Y Y, HOU J, WANG P F, et al. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments [J]. Ecotoxicology and Environmental Safety, 2018, 148: 89-96.
[45]SHEVLIN D, O’BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes [J]. Science of the Total Environment, 2018, 621: 1033-1046.
[46]LEI C, ZHANG L, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging [J]. Environmental Pollution, 2016, 218: 505-512.
[47]WANG B Q, AN B H, LIU Y, et al. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation [J]. Separation and Purification Technology, 2020, 248: 117061.
[48]車兴凯. 纳米氧化铜对藻类毒害的机理研究 [D]. 山东 泰安: 山东农业大学, 2019.
[49]FAURE B, SALAZAR-ALVAREZ G, BERGSTROM L. Hamaker constants of iron oxide nanoparticles [J]. Langmuir, 2011, 27(14): 8659-8664. [50]VERMA A, STELLACCI F. Effect of surface properties on nanoparticle-cell interactions [J]. Small, 2010, 6(1): 12-21.
[51]罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究 [J]. 生态毒理学报, 2018, 13(6): 333-341.
[52]赵新仕. Nano-BiOCl对羊角月牙藻的毒性效应—氧空位的影响 [D]. 河南 南阳: 南阳师范学院, 2019.
[53]辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响 [J]. 生态毒理学报, 2013, 8(1): 23-28.
[54]李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应 [J]. 农业环境科学学报, 2013, 32(6): 1122-1127.
[55]李丽丽. 硅藻土负载改性N-TiO2纳米材料可見光降解水中Microcystin-LR研究 [D]. 福州: 福建师范大学, 2018.
[56]LIN Y, TAYLOR S, LI H P, et al. Advances toward bioapplications of carbon nanotubes [J]. Journal of Materials Chemistry, 2004, 14(4): 527-541.
[57]TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms [J]. Separation and Purification Technology, 2015, 150: 229-242.
[58]赵晓丽, 王珺瑜, 方蕾, 等. 人工合成纳米材料在水环境中的聚沉行为研究进展 [J]. 矿物岩石地球化学通报, 2019, 38(3): 522-533.
[59]雷铖. 铁基纳米材料对水中有机污染物的去除作用及藻类毒性效应 [D]. 杭州: 浙江大学, 2019.
[60]FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles [J]. Environmental Science & Technology, 2009, 43(5): 1354-1359.
[61]孙倩. 碳基纳米材料吸附溶解性有机物质的分子动力学模拟研究 [D]. 长春: 东北师范大学, 2013.
[62]WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science & Technology, 2011, 45(14): 6032-6040.
[63]赵建, 曹雪松, 代燕辉, 等. 溶解有机质影响下氧化铜纳米颗粒对藻细胞的致毒机制 [C]//中国毒理学会. 第七次全国毒理学大会暨第八届湖北科技论坛, 2015: 265.
[64]XU Z X, LU J C, ZHENG X Y, et al. A critical review on the applications and potential risks of emerging MoS2 nanomaterials [J]. Journal of Hazardous Materials, 2020, 399: 123057.
(责任编辑: 张 晶)
关键词: 纳米材料; 藻华; 营养盐; 细胞毒性; 固定化
中图分类号: X522 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.011
A review of applications and research progress on the use of nanoparticles for the inhibition of harmful algal bloom
YUAN Yuxin1,2,3,4, LIU Jiamin1,2,3,4, PAN Ling1,2,3,4, WANG Lihong1,2,3,4, ZHANG Xueli1,2,3,4, HUANG Minsheng1,2,3,4
(1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2. Institute of EcoChongming, Shanghai 202162, China; 3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241; 4. Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area (Ministry of Natural Resources), Shanghai 200062, China)
Abstract: This review summarizes the latest research progress on the inhibition mechanism of different nanoparticles on algal bloom. We systematically analyze the influence of environmental factors on migration and transformation of nutrients and the cytotoxicity process regulated by nanoparticles. The future prospects for the immobilization of nanoparticles are explored, and the paper proposes ideas to realize the functional performance of nanomaterials while controlling environmental risks. This research sheds light on new strategies for the inhibition of algal bloom.
Keywords: nanoparticles; harmful algal bloom; nutrients; cytotoxicity; immobilization
0 引 言
由于人类活动的干扰, 世界范围内的水体—自然水体(河湖库等)、功能水体(景观、养殖水体等)以及进行生态修复的污染水体都部分呈现富营养化状态. 富营养化水体中的营养盐浓度远远超出微藻的生长所需, 大型丝状藻更是可以在贫营养水体中滋生, 这就导致了藻华的频繁发生[1]. 藻华及其衍生出的次生灾害会对水环境乃至整个水生生态系统造成严重破坏, 使生态安全和饮用水安全受到威胁, 因此, 藻华问题仍然是水环境治理的重点问题.
纳米材料的研制及应用为控制藻华提供了新的理论和技术支持. 相比于传统尺寸的粒子, 纳米粒子因其纳米级的尺寸与反应物接触更加充分, 使反应更加高效. 与传统治理手段相比, 利用纳米材料控制藻华可以极大地减少材料投加量, 降低经济成本, 减少二次污染风险. 然而, 这些性质也能够使纳米材料在水环境中的迁移转化过程愈加复杂, 并且可以通过生物地球化学循环进入生物体内富集[2].同时, 納米材料的流失给回收工作增加了难度, 造成资源浪费和生态安全隐患. 因此, 如何在不影响功能的前提下对纳米材料进行有效固定成为亟待解决的问题.
本文分析了近年来纳米材料在藻华控制方面的研究成果, 分别从作用机制和影响因素两个方面进行综述: 一方面是不同纳米材料对营养盐和藻细胞的作用机制, 另一方面是影响纳米粒子效能的环境暴露因子. 此外, 对纳米材料的固定提出展望, 以期实现对纳米材料功能和环境风险的精确管控, 为藻华治理提供新的思路.
1 纳米材料控制藻华的途径藻华的产生是藻类和氮磷营养盐相互作用的结果, 主要是藻类从无到有, 再由盛转衰, 最终沉降分解; 营养盐由水体进入藻体, 参与藻体整个生命周期最终又回到水体的过程. 藻华的成因主要集中在3个方面: 营养盐因子、 生物因子和环境因子[3]. 纳米材料对藻华的控制主要通过调控营养盐和生物因子两个方面实现对藻华的控制, 故从营养盐因子限制和藻细胞抑制两个方面进行综述. [ 2 ]SHEVLIN D, O’BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes [J]. Sci Total Environ, 2018, 621: 1033-1046.
[ 3 ]DONAGHAY P L, OSBORN T R. Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts [J]. Limnology and Oceanography, 1997, 42(5): 1283-1296.
[ 4 ]GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? [J]. Limnology and Oceanography, 2000, 45(6): 1213-1223.
[ 5 ]杭嘉祥, 李法云, 梁晶, 等. 鎂改性芦苇生物炭对水环境中磷酸盐的吸附特性 [J]. 生态环境学报, 2020, 29(6): 1235-1244.
[ 6 ]SHIN J, LEE Y G, LEE S H, et al. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds [J]. Journal of Hazardous Materials, 2020, 400: 102-123.
[ 7 ]ZHU D C, CHEN Y Q, YANG H P, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution [J]. Chemosphere, 2020, 247: 125847.
[ 8 ]曹丹. 绿色合成纳米Fe3O4的改性及用于水中氨氮和磷的去除 [D]. 福州: 福建师范大学, 2016.
[ 9 ]王慧. 铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究 [D]. 武汉: 华中农业大学, 2015.
[10]ACELAS N Y, MARTIN B D, LOPEZ D, et al. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media [J]. Chemosphere, 2015, 119: 1353-1360.
[11]刘婷娇. 镁铁类水滑石去除水中磷和藻及其资源化利用 [D]. 湖南 湘潭: 湘潭大学, 2019.
[12]卢松花. 水体中共存组分对U(Ⅵ)在钛酸盐材料上的作用机制影响 [D]. 合肥: 中国科学技术大学, 2019.
[13]李元梓. 负载镧复合纳米材料的制备及其用于水体除磷性能研究 [D]. 南京: 南京理工大学, 2019.
[14]贺银海. 沸石同步脱氮除磷功能调控及机理研究 [D]. 北京: 北京科技大学, 2018.
[15]PERLOVA O V, DZYAZKO Y S, PALCHIK A V, et al. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(Ⅵ) compounds from water [J]. Applied Nanoscience, 2020, 10(12): 4591-4602.
[16]XU Q Y, LI W P, MA L, et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite [J]. Science of the Total Environment, 2020, 703(9): 135002.
[17]KOH K Y, ZHANG S, CHEN J P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance [J]. Chemical Engineering Journal, 2020, 380: 122153.
[18]SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles [J]. Water Research, 2013, 47(14): 5018-5026. [19]WU K, LI Y, LIU T, et al. Evaluation of the adsorption of ammonium-nitrogen and phosphate on a granular composite adsorbent derived from zeolite [J]. Environmental Science and Pollution Research, 2019, 26(17): 17632-17643.
[20]TARN D, ASHLEY C E, XUE M, et al. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility [J]. Accounts of Chemical Research, 2013, 46(3): 792-801.
[21]BEIGY M R, RASEKH B, YAZDIAN F, et al. High nitrate removal by starch-stabilized Fe-0 nanoparticles in aqueous solution in a controlled system [J]. Engineering in Life Sciences, 2018, 18(3): 187-195.
[22]马静. 生物炭负载纳米零价铁对地下水硝酸盐氮去除及氮气选择性转化性能研究 [D]. 西安: 西北大学, 2019.
[23]DAS R K, WANG Y, VASILYEVA S V, et al. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons [J]. Acs Nano, 2014, 8(8): 8447-8456.
[24]张婉. 纳米氧化锌及其复合材料光催化去除水中低浓度氨氮研究 [D]. 南京: 南京理工大学, 2017.
[25]CHEN Y F, WANG Q, ZHAO S, et al. Removal of nutrients and emission of nitrous oxide during simultaneous nitrification, denitrification and phosphorus removal process with metal ions addition [J]. International Biodeterioration & Biodegradation, 2019, 142: 143-150.
[26]MENG X Y, CHEN Z F, WANG C, et al. Development of a three-dimensional electrochemical system using a blue TiO2/SnO2-Sb2O3 anode for treating low-ionic-strength wastewater [J]. Environmental Science & Technology, 2019, 53(23): 13784-13793.
[27]AMATERZ E, TARA A, BOUDDOUCH A, et al. Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B [J]. Journal of Applied Electrochemistry, 2020, 50(5): 569-581.
[28]ZHANG S H, YOU J P, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review [J]. Chemical Engineering Journal, 2018, 334: 2625-2637.
[29]WANG Y, FU W, XUE P. Degradation of trace oil in water using magnetic immobilized microorganism [J]. Chemical Engineering(China), 2017, 45(9): 7-12.
[30]LIU S Q, WANG C, HOU J, et al. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors [J]. Water Research, 2020, 171: 115436.
[31]ZHAO J, DAI Y H, WANG Z Y, et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies: Importance of heteroaggregation [J]. Environmental Science & Technology, 2018, 52(22): 13448-13456.
[32]賈云婷. 磁性MOFs纳米材料的制备及除藻特性研究 [D]. 石家庄: 河北科技大学, 2019. [33]REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae [J]. Toxicology Reports, 2019(6): 1309-1313.
[34]王雅学. 纳米Fe2O3与四环素对羊角月牙藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019.
[35]WANG D X, AO Y H, WANG P F. Effective inactivation of microcystis aeruginosa by a novel Z-scheme composite photocatalyst under visible light irradiation [J]. Science of the Total Environment, 2020, 746: 141149.
[36]武鹏鹏. Nano TiO2和土霉素对斜生栅藻的毒性效应研究 [D]. 石家庄: 河北科技大学, 2019.
[37]GAO X, ZHOU K, ZHANG L, et al. Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO2 nanoparticles [J]. Environmental Science: Nano, 2018, 5(3): 720-729.
[38]陈喜. 水环境中纳米银颗粒与莱茵衣藻的交互作用研究 [D]. 山东 泰安: 山东农业大学, 2019.
[39]FATHI P, SADEGHI G, HOSSEINI M J, et al. Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid [J]. Sn Applied Sciences, 2020, 2(2): 11.
[40]马偲. 水中纳米颗粒的自团聚及与藻细胞的异团聚 [D]. 杭州: 浙江大学, 2014.
[41]MUNK M, BRANDAO H M, NOWAK S, et al. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae [J]. Ecotoxicology and Environmental Safety, 2015, 122: 399-405.
[42]曹丽, 吕天平, 贺京城, 等. 纳米TiO2光催化去除水华藻类的研究进展 [J]. 工业催化, 2019, 27(4): 17-21.
[43]程晓燕. 纳米BiOBr对羊角月牙藻的毒性效应研究 [D]. 河南 南阳: 南阳师范学院, 2019.
[44]YANG Y Y, HOU J, WANG P F, et al. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments [J]. Ecotoxicology and Environmental Safety, 2018, 148: 89-96.
[45]SHEVLIN D, O’BRIEN N, CUMMINS E. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes [J]. Science of the Total Environment, 2018, 621: 1033-1046.
[46]LEI C, ZHANG L, YANG K, et al. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging [J]. Environmental Pollution, 2016, 218: 505-512.
[47]WANG B Q, AN B H, LIU Y, et al. Selective reduction of nitrate into nitrogen at neutral pH range by iron/copper bimetal coupled with formate/ferric ion and ultraviolet radiation [J]. Separation and Purification Technology, 2020, 248: 117061.
[48]車兴凯. 纳米氧化铜对藻类毒害的机理研究 [D]. 山东 泰安: 山东农业大学, 2019.
[49]FAURE B, SALAZAR-ALVAREZ G, BERGSTROM L. Hamaker constants of iron oxide nanoparticles [J]. Langmuir, 2011, 27(14): 8659-8664. [50]VERMA A, STELLACCI F. Effect of surface properties on nanoparticle-cell interactions [J]. Small, 2010, 6(1): 12-21.
[51]罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究 [J]. 生态毒理学报, 2018, 13(6): 333-341.
[52]赵新仕. Nano-BiOCl对羊角月牙藻的毒性效应—氧空位的影响 [D]. 河南 南阳: 南阳师范学院, 2019.
[53]辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响 [J]. 生态毒理学报, 2013, 8(1): 23-28.
[54]李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应 [J]. 农业环境科学学报, 2013, 32(6): 1122-1127.
[55]李丽丽. 硅藻土负载改性N-TiO2纳米材料可見光降解水中Microcystin-LR研究 [D]. 福州: 福建师范大学, 2018.
[56]LIN Y, TAYLOR S, LI H P, et al. Advances toward bioapplications of carbon nanotubes [J]. Journal of Materials Chemistry, 2004, 14(4): 527-541.
[57]TAN K B, VAKILI M, HORRI B A, et al. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms [J]. Separation and Purification Technology, 2015, 150: 229-242.
[58]赵晓丽, 王珺瑜, 方蕾, 等. 人工合成纳米材料在水环境中的聚沉行为研究进展 [J]. 矿物岩石地球化学通报, 2019, 38(3): 522-533.
[59]雷铖. 铁基纳米材料对水中有机污染物的去除作用及藻类毒性效应 [D]. 杭州: 浙江大学, 2019.
[60]FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles [J]. Environmental Science & Technology, 2009, 43(5): 1354-1359.
[61]孙倩. 碳基纳米材料吸附溶解性有机物质的分子动力学模拟研究 [D]. 长春: 东北师范大学, 2013.
[62]WANG Z Y, LI J, ZHAO J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga microcystis aeruginosa as affected by dissolved organic matter [J]. Environmental Science & Technology, 2011, 45(14): 6032-6040.
[63]赵建, 曹雪松, 代燕辉, 等. 溶解有机质影响下氧化铜纳米颗粒对藻细胞的致毒机制 [C]//中国毒理学会. 第七次全国毒理学大会暨第八届湖北科技论坛, 2015: 265.
[64]XU Z X, LU J C, ZHENG X Y, et al. A critical review on the applications and potential risks of emerging MoS2 nanomaterials [J]. Journal of Hazardous Materials, 2020, 399: 123057.
(责任编辑: 张 晶)