论文部分内容阅读
通过改进基于Haar-like特征和Adaboost的级联分类器,提出一种融合Haar-like特征和HOG特征的道路车辆检测方法。在传统级联分类器的Harr-like特征基础上引入HOG特征;为Haar-like特征和HOG特征分别设计不同形式的弱分类器,对每一个特征进行弱分类器的训练,用Gentle Adaboost算法代替Discrete Adaboost算法进行强分类器的训练;在级联分类器的最后几层上使用Adaboost算法挑选出来的特征组成特征向量训练SVM分类器。实验结果表明所提出的方法能有效