论文部分内容阅读
针对传统小波核极限学习机(Extreme Learning Machine,ELM)应用于医疗滚动轴承故障诊断中识别精度不高且训练速度慢的一系列问题的出现,并针对性的想出一种更好地对滚动转轴发生的故障进行识别的办法,通过对小波核极限学习机算法进行改进的方法;该方法运用改进果蝇算法(LGMS-Fruit-flying Optimization Algorithm,LGMS-FOA)优化小波核极限学习机中的正则化系数和小波核函数中的参数;采用的方法是变分模态分解(Variational Mode Decomp