论文部分内容阅读
针对鲸鱼优化算法(whale optimization algorithm,WOA)容易陷入局部最优和收敛精度低的问题进行了研究,提出一种改进的鲸鱼优化算法(IWOA)。该算法通过准反向学习方法来初始化种群,提高种群的多样性;然后将线性收敛因子修改为非线性收敛因子,有利于平衡全局搜索和局部开发能力;另外,通过增加自适应权重改进鲸鱼优化算法的局部搜索能力,提高收敛精度;最后,通过随机差分变异策略及时调整鲸鱼优化算法,避免陷入局部最优。实验选取九个基准函数,所有算法均迭代30次,结果表明:改进的鲸鱼优化