论文部分内容阅读
模糊度降相关技术可以有效提高模糊度求解的效率及成功率,LLL(A.K.Lenstra,H.W.Lenstra,L.Lovasz)算法是新出现的模糊度降相关方法。详细分析LLL算法,针对该算法中存在的缺陷,提出逆整数乔勒斯基、整数高斯算法和升序调整矩阵辅助的改进LLL算法。利用谱条件数及平均相关系数为准则,以300个随机模拟的对称正定矩阵作为模糊度方差-协方差矩阵,对LLL算法和改进的LLL算法进行仿真计算。比较与分析结果表明,改进LLL算法模糊度降相关处理更加彻底,能有效地加速整周模糊度搜索及成功解算。