论文部分内容阅读
本文从3个方面对原始压缩跟踪算法进行改进,以提高其在复杂场景下的鲁棒性和准确性。首先,提出一种结合特征在线选择的压缩跟踪算法,通过计算相邻两帧同维特征所服从的高斯分布曲线的Hellinger距离来度量特征的置信水平,从特征池中选择置信水平较高的特征,并融合特征的置信水平构造贝叶斯分类器。然后,在压缩跟踪框架下引入协方差矩阵以增强算法对目标的表达能力,把Haar-like特征和协方差矩阵相结合构建目标模型,取最大响应值所对应的候选样本作为跟踪结果。最后,优化分类器参数的更新方式,根据目标模板与跟踪结果