论文部分内容阅读
气候系统是典型的非平稳性系统,然而对于气候观测数据的处理通常是在时间序列平稳的假定下完成的,比如气温和降水的多步预报,这通常会导致预报准确度较低。为改进该缺陷,首先将非平稳数据序列分解成平稳的、多尺度特征的本征模态函数分量(IMF),再使用数值集合预报与逐步回归分析相结合的方式对每一个IMF分量构建不同的预报模型,最后线性拟合成预报结果。通过Visual Studio 2008开发平台使用上述方法建立了一个短期气候预报系统,采用广西区88个气象站1957—2005年的2月距平气温数据进行实际验证。结果表明