论文部分内容阅读
This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.
The proposed paper proposes a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables , such as transformer taps and reactive power source-stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are minimized the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness .