论文部分内容阅读
The stochastic resonance based on optical bistability in the semiconductor optical amplifier is numerically investigated to extract a weak pulse signal buried in noise. The output property of optical bistability under different system parameters is analyzed, which determines the performance of the stochastic resonance. Through optimizing these parameters, the noise-hidden signal is extracted via stochastic resonance, in which the maximum cross-correlation gain higher than nine is obtained. This provides a novel technology for detecting a weak optical signal in various signal processing fields.
The stochastic resonance based on optical bistability in the semiconductor optical amplifier is numerically investigated to extract a weak pulse signal buried in noise. The output property of optical bistability under different system parameters is analyzed, which determines the performance of the stochastic resonance. parameters, the noise-hidden signal is extracted via stochastic resonance, in which the maximum cross-correlation gain higher than nine is obtained. This provides a novel technology for detecting a weak optical signal in various signal processing fields.