论文部分内容阅读
为了提高近红外光谱分析精度,提出结合偏最小二乘判别分析(PLS-DA)与支持向量机(SVM)的软测量方法(PLSS-DA—SVM).该方法利用一组由不同类别组成的训练样本,引入二叉树进行多重分类,节点分类器由PLS-DA方法建立;利用偏最小二乘支持向量机(PLS-SVM)建立每类样本的定量模型.预测时,用PLS-DA分类树对待测样本进行分类,选择相应的PLS-SVM模型进行定量分析.实验利用PLS-DA-SVM方法和近红外光谱数据建立汽油的研究法辛烷值软测量模型,针对2个批次共计57个成品汽油样本进行蒙特