论文部分内容阅读
引入了代数的复同态分离性质,证明如果φ是从有单位Banach代数A到有单位且具有复同态分离性质的Banach代数B中的保单位线性映射,则以下等价:①φ是保可逆映射;②φ是保乘法映射;③φ是保逆运算映射;④φ是保平方映射;⑤φ是谱压缩映射;⑥φ是Jordan同态.作为应用,证明了从Banach代数到半单交换Banach代数的保单位且保可逆的线性映射是自动连续的代数同态.最后,还证明了当n不小于2时,从矩阵代数Mn(C)到任一具有复同态分离性质的代数的任一代数同态必为零.