论文部分内容阅读
随着应用型技术大学建设的潮流到来,不少高校进行了转型或对培养方案进行了调整,为了普及学生的工程素养,学校将工程训练课程向全校学生推开。尽管可以通过“轮班制”的安排来达到增加人机比的目的,但是,学生与实训设备数量比例失调的问题接踵而至。然而“轮班制”在工程训练教学过程中的实施有很大的盲目性,缺乏该项制度对教学效果和实训设备利用优化的科学论证与探究,无法得到最优化的轮班安排。因此,研究“轮班制”对实训教学效果与实训设备利用优化有着重要的现实意义。
一、工程实训教学的“轮班制”实施方案
每个高校的工程实训内容根据每个学校的培养目标不同而略有差异,但大致基本包含了机械制造和电子电工技术两个大类,由车工、焊工、钳工、铣工、特种加工、电工工艺、电子工艺等组成。传统的理论课程的授课方式一般是按照教学大纲顺序逐一开展,每周每个课程只能进行40人次/40学时,这难以适应工程实训教学任务(每个年级若有3000人,则每周通常要完成500人次/40学时),因此采取“轮班制”如下。
1.多个工种同时进行
不同于其他理论课的前后章节内容联系紧密的特点,工程实训课程里包含的工种所培训的技能的关联度不大,因此可以同时安排多个教学班进行不同的工种训练,然后通过轮换的方式,保证每个人都保质保量训练到每一个工种。通过此方式轮换,能将该课程每周的学生容量和设备利用率成倍提升,但设备负荷损失成本提高。
2.每天分成早、晚两班
为了进一步扩大工程训练每周的学生容量,除了使多个工种同时进行轮班的形式,还可以将两个作息班形式的教学结合起来。工程实训是以技能训练为主的课程,练习的时间最好相对连续,有利于学生技能的获得。将早上8:00~14:00作为早班,14:30~20:30作为晚班,每个班折算成8学时,因此又在原来的基础上将学生容量扩大一倍。
这两种制度结合就构成本文所讨论的“轮班制”,这种制度保证了学校能用少数的设备开展大量的实训课程,大大提升了设备利用率,但是,这样长时间使设备处于工作状态,会使设备故障率也大大提升,缩短了设备寿命。
二、典型工程训练设备的故障率与使用时长分析
为了研究设备故障率与工作时间关系,便于找到设备的最佳工作时间以指导轮班制教学,笔者通过对几个典型工种的设备进行随机抽样,进行多次实验,加以统计分析,得出下图所示结果。
图中横轴表示每天连续工作的时间,纵轴表示实验半年后统计出设备的故障率,反映不同设备分别进行不同的连续工作实验测试,得到的故障率各有不同。每天连续工作5~8小时设备的故障率普遍较低,超过8小时后,每种设备的故障率上升的趋势明显增大,还可以知道涉及精密电子元件的设备的故障率要比车床设备高,但故障维修成本较车床低,恢复速度也较快。
三、设备利用优化措施
“轮班制”下设备的故障率与设备利用率是相互制约的关系,每天的使用时间越长,使用率越高,故障率也会越高。根据图中所示结果可以知道几种典型工种的设备在“轮班制”教学中设备较优工作时长。在实验中,还发现设备的故障率与使用者的操作和保养水平也有很大关系:初学者使用普通车床和普通铣床产生故障的概率要比熟练操作工使用所产生的故障率高出很多,车床上润滑油是否及时和是否进行必要的清扫也影响机器的故障率;电子电工设备故障率与实验的项目内容存在一定的关联,复杂、操作难度大、大电流、大电压的实验项目中使用的设备的故障率要比一般的实验项目高出许多,3D打印设备故障率与设备所处的工作环境的温湿度、空气清洁度关联较大。
因此,在“轮班制”的工程训练教学模式下,优化设备的利用率,可以根据不同设备的维修成本和恢复速度着手,分配“轮班制”的设备工作时间,以成本代价为导向,制订合理的作息时间。同时,应注重对使用者的使用技能培训,强调安全细节,注重保养,共同作用使设备利用率和故障率达到较优化的比值。经过长时间的经验总结,得到几种常见的实训设备的维修成本、恢复时间以及故障率的关系,如上表所示。
表中显示普通车床和普通铣床故障率每升高0.1%,则对应维修成本需要增加3000元,维修时间增加36小时;电工实训台和ABS型打印机故障率每增加1.0%,则对应维修成本增加600元,恢复时间增加5小时。根据工程训练课程几种工种并行进行轮班的特点,需要找出一个都比较合适的工作时长。以此数据为例,综合分析可知,在8~10小时工作时长区间内,电工实训台和ABS型打印机的维修成本以及恢复时间与普通车床与普通铣床基本持平,可选此时间区域为设备的工作时间,保证“轮班制”开展的时长最大,故障维护成本和利用率比值较小。若工程训练课程有其他工种或不同的组合,应该根据实际情况进行分析统计,按照此法需要合理的设备连续工作时间区域。
本文分析了“轮班制”的模式带来的设备工作时间比普通教学时间过长所导致设备故障率上升的问题,并通过实验得到產生问题的各因素之间的简单曲线,以其结果指导工程训练教学轮班制的时长制订,以及分析其他制约故障率的相关因素,综合处理以得到优化的使用率。
参考文献:
[1]王中华,夏 芳,王新亭.轮班制尝试[J].中学语文,2009(12): 32-34.
[2]田也壮.制定合理工作轮班制的思考[J].中国劳动科学,1991(7): 25-27.
一、工程实训教学的“轮班制”实施方案
每个高校的工程实训内容根据每个学校的培养目标不同而略有差异,但大致基本包含了机械制造和电子电工技术两个大类,由车工、焊工、钳工、铣工、特种加工、电工工艺、电子工艺等组成。传统的理论课程的授课方式一般是按照教学大纲顺序逐一开展,每周每个课程只能进行40人次/40学时,这难以适应工程实训教学任务(每个年级若有3000人,则每周通常要完成500人次/40学时),因此采取“轮班制”如下。
1.多个工种同时进行
不同于其他理论课的前后章节内容联系紧密的特点,工程实训课程里包含的工种所培训的技能的关联度不大,因此可以同时安排多个教学班进行不同的工种训练,然后通过轮换的方式,保证每个人都保质保量训练到每一个工种。通过此方式轮换,能将该课程每周的学生容量和设备利用率成倍提升,但设备负荷损失成本提高。
2.每天分成早、晚两班
为了进一步扩大工程训练每周的学生容量,除了使多个工种同时进行轮班的形式,还可以将两个作息班形式的教学结合起来。工程实训是以技能训练为主的课程,练习的时间最好相对连续,有利于学生技能的获得。将早上8:00~14:00作为早班,14:30~20:30作为晚班,每个班折算成8学时,因此又在原来的基础上将学生容量扩大一倍。
这两种制度结合就构成本文所讨论的“轮班制”,这种制度保证了学校能用少数的设备开展大量的实训课程,大大提升了设备利用率,但是,这样长时间使设备处于工作状态,会使设备故障率也大大提升,缩短了设备寿命。
二、典型工程训练设备的故障率与使用时长分析
为了研究设备故障率与工作时间关系,便于找到设备的最佳工作时间以指导轮班制教学,笔者通过对几个典型工种的设备进行随机抽样,进行多次实验,加以统计分析,得出下图所示结果。
图中横轴表示每天连续工作的时间,纵轴表示实验半年后统计出设备的故障率,反映不同设备分别进行不同的连续工作实验测试,得到的故障率各有不同。每天连续工作5~8小时设备的故障率普遍较低,超过8小时后,每种设备的故障率上升的趋势明显增大,还可以知道涉及精密电子元件的设备的故障率要比车床设备高,但故障维修成本较车床低,恢复速度也较快。
三、设备利用优化措施
“轮班制”下设备的故障率与设备利用率是相互制约的关系,每天的使用时间越长,使用率越高,故障率也会越高。根据图中所示结果可以知道几种典型工种的设备在“轮班制”教学中设备较优工作时长。在实验中,还发现设备的故障率与使用者的操作和保养水平也有很大关系:初学者使用普通车床和普通铣床产生故障的概率要比熟练操作工使用所产生的故障率高出很多,车床上润滑油是否及时和是否进行必要的清扫也影响机器的故障率;电子电工设备故障率与实验的项目内容存在一定的关联,复杂、操作难度大、大电流、大电压的实验项目中使用的设备的故障率要比一般的实验项目高出许多,3D打印设备故障率与设备所处的工作环境的温湿度、空气清洁度关联较大。
因此,在“轮班制”的工程训练教学模式下,优化设备的利用率,可以根据不同设备的维修成本和恢复速度着手,分配“轮班制”的设备工作时间,以成本代价为导向,制订合理的作息时间。同时,应注重对使用者的使用技能培训,强调安全细节,注重保养,共同作用使设备利用率和故障率达到较优化的比值。经过长时间的经验总结,得到几种常见的实训设备的维修成本、恢复时间以及故障率的关系,如上表所示。
表中显示普通车床和普通铣床故障率每升高0.1%,则对应维修成本需要增加3000元,维修时间增加36小时;电工实训台和ABS型打印机故障率每增加1.0%,则对应维修成本增加600元,恢复时间增加5小时。根据工程训练课程几种工种并行进行轮班的特点,需要找出一个都比较合适的工作时长。以此数据为例,综合分析可知,在8~10小时工作时长区间内,电工实训台和ABS型打印机的维修成本以及恢复时间与普通车床与普通铣床基本持平,可选此时间区域为设备的工作时间,保证“轮班制”开展的时长最大,故障维护成本和利用率比值较小。若工程训练课程有其他工种或不同的组合,应该根据实际情况进行分析统计,按照此法需要合理的设备连续工作时间区域。
本文分析了“轮班制”的模式带来的设备工作时间比普通教学时间过长所导致设备故障率上升的问题,并通过实验得到產生问题的各因素之间的简单曲线,以其结果指导工程训练教学轮班制的时长制订,以及分析其他制约故障率的相关因素,综合处理以得到优化的使用率。
参考文献:
[1]王中华,夏 芳,王新亭.轮班制尝试[J].中学语文,2009(12): 32-34.
[2]田也壮.制定合理工作轮班制的思考[J].中国劳动科学,1991(7): 25-27.