论文部分内容阅读
运用时窗复杂度序列来分析睡眠脑电,减少了非平稳性及状态空间的不均匀性造成的脑状态信息的丢失,在一定程度上克服了复杂度自身的局限,有助于不同睡眠期状态特征的提取.另外采用独立分量分析(ICA)、小波变换等方法对脑电进行预处理,实验表明它们能有效地去除脑电中的一些生理干扰,有利于提高复杂度算法在睡眠分期应用中的精确度.