A CADe system for nodule detection in thoracic CT images based on artificial neural network

来源 :Science China(Information Sciences) | 被引量 : 0次 | 上传用户:afanti76
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Lung cancer has been the leading cause of cancer-related deaths in 2015 in United States. Early detection of lung nodules will undoubtedly increase the five-year survival rate for lung cancer according to prior studies. In this paper, we propose a novel rating method based on geometrical and statistical features to extract initial nodule candidates and an artificial neural network approach to the detection of lung nodules. The novel method is solely based on 3D distribution of neighboring voxels instead of user-specified features. During initial candidates detection, we combine organized region properties calculated from connected component analysis with corresponding voxel value distributions from statistical analysis to reduce false positives while retaining true nodules. Then we devise multiple artificial neural networks(ANNs) trained from massive voxel neighbor sampling of different types of nodules and organize the outputs using a 3D scoring method to identify final nodules. The experiments on 107 CT cases with 252 nodules in LIDC-IDRI data sets have shown that our new method achieves sensitivity of 89.4% while reducing the false positives to 2.0 per case. Our comprehensive experiments have demonstrated our system would be of great assistance for diagnosis of lung nodules in clinical treatments. Lung cancer has been the leading cause of cancer-related deaths in 2015 in United States. Early detection of lung nodules will undoubtedly increase the five-year survival rate for lung cancer according to prior studies. In this paper, we propose a novel rating method based on geometrical and statistical features to extract initial nodule candidates and an artificial neural network approach to the detection of lung nodules. The novel method is solely based on 3D distribution of neighboring voxels instead of user-specified features. During initial candidates detection, we combine organized welaumber of connected components analysis with corresponding voxel value distributions from statistical analysis to reduce false positives while retaining true nodules. Then we devise multiple artificial neural networks (ANNs) trained from massive voxel neighbor sampling of different types of nodules and organize the outputs using a 3D scoring method to identify final nodules. The e xperiments on 107 CT cases with 252 nodules in LIDC-IDRI data sets have shown that our new method achieves sensitivity of 89.4% while reducing the false positives to 2.0 per case. Our comprehensive experiments have demonstrated our system would be of great assistance for diagnosis of lung nodules in clinical treatments.
其他文献
祁南煤矿副井冻结段的井壁结构,采用了新设计的可缩滑动井壁。结合施工实践,对井壁厚度偏薄、滑动层厚度偏小,以及采用沥青作为井壁滑动和内壁防水材料等问题进行了分析,提出了需
该文的主要工作是在复杂旋转机械设备故障诊断中应用了数据融合方法.数据融合可以概括为:在一定准则的支配下,利用计算机技术对来自多方位多传感器的时序数据从不同层面进行
相对于传统的排水固结方法,电渗法针对排水条件较差的软弱黏性土具有独特的优势。然而,能耗较大和土样排水不均匀的问题一直制约了电渗法在实际工程中的推广和应用。前期学者对
典型L形型材广泛应用于薄壁梁结构及框架结构中,在L形型材的有限元分析中通常采用的单根L形截面梁建模方法与实体结构存在一定的误差,提高L形型材的建模精度和计算效率对整体结构振动特性研究有重要意义。本文首先用两种不同的实体单元、壳单元和梁单元对典型L形型材进行了建模分析,发现忽略倒角及采用单一的壳单元和梁单元建模的模型质量不好,这是由于单一的壳单元和梁单元模型不能准确地模拟倒角的形状。在倒角处加上另一
该文绪论综述了门式结构稳定性问题及壳和薄板结构后屈曲跟踪的研究现状.第二章总结归纳了结构稳定性分析线性模型和非线性模型,其中非线性包括几何非线性和物理非线性.第三
埕岛油田是胜利油田海上石油开发的重要组成部分.近海海底管道浅埋在海床的泥沙里,由于受海流的冲刷作用,有可能裸露出来,形成管道悬空.悬空管道在海流等随机载荷的作用下,会
研究裂纹在疲劳载荷作用下的扩展行为是一个具有重大科学意义与理论价值的课题.然而,到目前为止,尽管在描述疲劳裂纹扩展行为方面做了许多工作,但仍缺乏贴近疲劳裂纹扩展物理
目的 分析25例成人流行性乙型脑炎的临床特点,提高临床对该病的认识及诊断水平.方法 回顾性分析2017年7~9月甘肃省人民医院收治的25例确诊的流行性乙型脑炎患者的临床特点、血
该文对变刚度半主动结构振动控制进行了比较系统深入的研究,包括研制开发变刚度半主动控制系统;建立理论模型与控制规律;模拟地震振动台试验研究;跨层变刚度控制和组合结构体
跟踪骨细胞水平的力学感知机理的研究和骨生理学的新发展,提出了骨功能适应的生理调整假设:骨再造平衡时骨组织水平的应变被调整、稳定在正常的应变值水平或生理应变范围内;