论文部分内容阅读
实现稻田精准植保的关键是自然环境下病变区域的准确识别。为实现大面积稻田中白穗的精确识别,该文提出一种小型多旋翼无人机水稻病害白穂识别系统,该系统以无人机平台作为图像采集、处理和识别的基础,首先对白穗图像提取Haar-like特征,其次以Adaboost算法进行白穗训练识别。以4类Haar-like特征及其组合构建弱分类器,用采集的稻田白穗和背景共700个样本点训练生成强分类器。所得强分类器对测试集中65幅图像中的423个白穗样本点进行识别验证,结果表明:白穗识别率可达93.62%,误识别率为5.44%,该