基于近红外光谱与连续投影算法的针叶材表面节子缺陷识别

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:fdsth5x1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了实现木板材依据节子进行自动化分级,利用近红外光谱技术对针叶材表面节子进行检测。比较了光谱预处理和建模方法对节子识别的影响,研究了单一树种板材节子识别模型对其他树种板材节子识别的适应性,建立了混合树种板材的节子识别模型,并利用连续投影算法(SPA)进行了节子特征波长优选。结果显示,一阶导数光谱结合最小二乘支持向量机(LS-SVM)所建单一和混合节子识别模型性能最优。连续投影算法优选了15个特征波长变量,仅占全波长变量的0.87%,所建LS-SVM简化模型对测试集的敏感性、特异性和识别准确率分别为0.990,0.954,97.44%。实验结果表明,近红外光谱技术联合SPA与LS-SVM可以对多种针叶材板材的表面节子进行快速准确检测,连续投影算法是提取板材表面节子缺陷特征的有效方法,能简化模型并提高模型预测精度。 In order to realize automatic grading of wood based on knot, the surface knot of softwood was tested by near-infrared spectroscopy. The effects of spectral preprocessing and modeling methods on node identification were compared. The adaptability of single-tree plate node recognition model to the identification of other tree species nodules was studied. A nodal recognition model of mixed tree species plate was established. The projection algorithm (SPA) is optimized for knot characteristic wavelength. The results show that the first-order derivative spectra combined with least square support vector machine (LS-SVM) to build single and hybrid nodal identification model performance is optimal. The continuous projection algorithm optimized 15 characteristic wavelength variables, accounting for only 0.87% of the total wavelength. The sensitivity, specificity and recognition accuracy of the proposed LS-SVM simplified model were 0.990, 0.954 and 97.44% respectively. The experimental results show that near-infrared spectroscopy combined with SPA and LS-SVM can detect the surface knots of various softwood lumber plates quickly and accurately. The continuous projection algorithm is an effective method to extract the features of knot defects on the surface of plate, which can simplify the model Improve model prediction accuracy.
其他文献
保护区周边农户对保护区满意度与保护态度研究是协调保护与发展问题所关注的热点问题。基于7省保护区周边社区的农户调查,运用卡方检验分析了不同类型农户对保护区满意度和保