论文部分内容阅读
孕期超声检查是评估胎儿大脑发育、检测生长异常的重要步骤,开展对胎儿早期检查准确高效的诊断研究具有重要的临床价值。文中使用双线性卷积神经网络BCNN进行胎儿颅脑横切面识别,提出了BCNN-R和BCNN-S两种算法。BCNN算法首先对输入的胎儿颅脑超声影像数据进行预处理,去除个人信息等敏感信息;其次,利用两路并行的子网络从影像数据中提取辨识度高、鲁棒性强的横切面特征,并将其融合得到有助于识别的细微特征;最后使用线性连接层进行识别和分类。为了验证算法的有效性,在自建胎儿超声数据集JFU19上进行了对比实验