论文部分内容阅读
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams(CFRDs). In this paper, two-dimensional analyses of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete(RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite(DFRCC) layer and an RC substrate. For this purpose, a co-axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes,an RC slab is more likely to develop a penetrating macro-crack in its thickness dimension. In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major harmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.
Estimating the cracking capacity of the face slab and recommending effective crack-control measures are important for the anti-seismic safety of concrete-faced rockfill dams (CFRDs). In this paper, two-dimensional analyzes of CFRDs are performed to simulate the seismic cracking behavior of conventional reinforced concrete (RC) face slab and a type of composite face slab. The composite face slab is composed of a ductile fiber-reinforced cement-based composite (DFRCC) layer and an RC substrate. For this purpose, a co- axial rotating smeared crack model for concrete and DFRCC is coupled with the generalized plasticity model for the rockfill material, and then implemented in a finite element program. The results show that during strong earthquakes, an RC slab is more likely to develop a penetrating macro- In contrast, the crack-controlling composite slab demonstrates excellent resistance to seismic cracking, and no penetrating macro-cracks are observed. Major ha rmful cracks that form in the concrete substrate are stopped by the DFRCC layer in composite slabs.