论文部分内容阅读
针对电厂燃煤锅炉NOx排放量预测建模中输入因子过多而导致神经网络结构规模过大、泛化能力差的问题,通过主成分分析和贝叶斯正则化的方法对BP神经网络进行改进,优化网络结构,从而提高了泛化能力。以某300MW机组锅炉热态多工况试验数据为例,改进的神经网络预测方法与传统的神经网络方法相比,泛化能力有显著提高,而且网络的收敛稳定,实际预测效果良好。