基于无芯-少模-无芯光纤结构的温度传感特性研究

来源 :应用光学 | 被引量 : 0次 | 上传用户:heeroyuyo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了一种基于无芯-少模-无芯光纤结构的温度传感器,对传感器进行了理论分析和实验研究.该传感器将无芯光纤(coreless fiber,CLF)与少模光纤(few-mode fiber,FMF)同轴熔接,构建无芯-少模-无芯的光纤结构,结构两端熔接单模(single mode fiber,SMF)光纤作为输入输出光纤,第1段无芯光纤与单模光纤的模式失配起到激发高阶模的作用,少模光纤中的LP01与LP11两种模式沿少模光纤纤芯传输,在第2段无芯光纤的作用下LP01与LP11两种模式重新耦合回单模光纤,LP01与LP11两种模式发生干涉,形成干涉光谱.当外界温度变化时,两种模式的光程差发生变化,干涉光谱的干涉波谷发生漂移,选取2个不同的干涉波谷作为特征波长,进行实验分析.实验结果表明:波长在1550 nm和1534 nm附近的干涉谷均发生红移,相应的温度灵敏度分别为68 pm/℃和44.5 pm/℃.该传感结构制作简单、灵敏度高,有很好的应用前景.
其他文献
为了提高同步辐射中压电变形镜的控制自由度和面形精度,解决压电致动单元数量过多引起的解算电压受噪声影响异常波动(过拟合)问题,建立了变形镜模型并进行仿真控制.通过有限元仿真获得36组压电响应方程,构建面形与电压的数学模型;为补偿重力造成的镜面畸变,以获得的椭圆面形分析并比较了使用最小二乘法和Tikhonov正则化两种电压解算方案的控制效果.结果表明:采用Tikhonov正则化算法反演后,面形控制误差相比最小二乘法降低了21.7%,相邻极板间电压波动极大值从1.019 kV下降为0.174 kV,反演结果符合
针对大尺度空间姿态测量中因空间阻隔导致目标特征点遮挡的问题,提出了一种基于多传感器组合的姿态测量方法.通过数字水准仪与姿态探针实现被测特征点的单坐标基准测量,由特征点的水平高差和已知几何约束关系解算得到目标初始姿态值.在此基础上标定高精度倾角传感器与被测目标之间的姿态旋转矩阵,基于坐标变换理论可由传感器输出实时解算目标姿态.实验结果表明:在10 m范围内,姿态测量相对精度优于0.0015°,重复性测量误差小于0.0004°,适用于大尺度阻隔空间姿态的精密实时测量.
从光波衍射的基本理论出发,利用高斯型分布的激光束,研究开普勒望远镜系统在衍射过程中光束畸变调控方法.利用中阶Zernike多项式构建像差函数法来模拟望远镜系统中的四叶畸变现象,并将该Zernike因子引入光学系统中弥补畸变效果.研究发现,波长和孔径会对奇异光强的分布产生明显的影响,波长增大的时候会改变光斑的形状,孔径会影响光斑强度和尺寸,11阶的Zernike四叶形变因子可以抵消望远镜系统的畸变现象.
干涉测量技术被广泛应用于纳米级的微观形貌测量,为了提高干涉测量的精度和灵敏度,提出一种基于白光干涉和激光二次干涉相结合的高灵敏度零差干涉测量方法.设计了高灵敏度零差干涉系统,利用激光二次干涉的零点对白光干涉的暗纹进行定位,使其在零光程差时达到斜率最大值.利用波动原理和干涉条纹的强度公式分别对白光信号和激光信号进行分析,并提出将白光和激光干涉信号相结合的灵敏度计算方法.对系统及其灵敏度进行了仿真,最后搭建光路,将白光干涉条纹调至暗纹位置,以此来定位激光二次干涉的零位,并进行数据采集.所述测量方法的灵敏度相比
光电吊舱在稳像和目标跟踪过程中存在摩擦力矩、不平衡力矩等干扰力矩,从而影响速度环响应精度;另一方面,吊舱视频跟踪器图像传输和处理造成的延迟也会造成跟踪滞后,因此必须进行延时补偿.提出基于预测跟踪的滑模变结构控制方法,采用微分预测跟踪器实现对视频跟踪器的延迟补偿,采用预测跟踪器估计出的目标运动角速率构成自适应补偿参数,以调整滑模变结构控制量,改进的滑模控制算法在补偿干扰力矩的同时抑制了抖振现象.仿真及实验结果表明:改进的控制方法能够有效补偿干扰力矩和跟踪器延迟造成的误差,相对于传统PID控制,其跟踪误差减小
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical ap-proaches such as the discrete element method (DEM) and finite difference method (FDM) have been widely used to model and analyze mining-induced surface subsidence
为监测液体运载火箭箭体长期储存状态下的晃动情况,保证产品的安全稳定,提出一种基于双目视觉测量的箭体晃动在线监测方法.利用全站仪等设备对像机内、外参数进行高精度标定;测量在箭体坐标系下同一标识点不同时刻的精确坐标;通过不同时刻标识点的坐标变化及约束条件构建方程组并求解位姿变换参数,进而得到实时箭体晃动量.实验验证结果表明:单个标识点最大测量误差、总偏差分别为0.026 mm和0.079 mm,能够有效满足箭体晃动在线监测的实际需求.
针对目前热电池内部装配缺陷检测效率低、准确度不高的问题,研究了一种可精准分割内部电池堆图像并能够准确识别缺陷种类的方法.首先采用水平、垂直积分投影法对目标电池堆边缘特征进行提取,利用局部自适应对比度增强算法对局部不清晰部分进行细节纹理增强;然后研究了缺陷结构的灰度特性,计算提取出缺陷特征参数;最后使用BP(back propagation)神经网络和CART(classification and regression tree)决策树对特征参数分类识别,并根据分类准确度进行权重分配,将加权融合后的结果作为
多光谱成像是无创观察生物组织的有效工具,提高光源的辐照均匀性将更有利于准确获取病理组织的多光谱数据.提出基于积分球的多光谱均匀光源系统,为生物组织的多光谱数据采集提供均匀辐照.基于蒙特卡罗光线追迹法对积分球腔体的取位方式进行选择,并对腔体大小、LED布局、积分球输出槽尺寸进行了优化,以确定结构模型的最佳参数;根据优化参数构造了集成11种窄波段LED的实例进行了光学性能验证,实验结果证明所有波段都能在输出槽的主要部分区域实现2%辐照度不均匀性分布;研究了该系统的宽光谱兼容能力,实验结果表明,光谱在输出槽的最
为测试光纤光栅(FBG)传感器是否可以承受由加速度引起的稳态惯性载荷,以及在承受这些载荷期间的传感性能,设计了一种铝合金基片封装式光纤光栅应变和温度传感器,并对其进行了加速度性能验证.确定了FBG应变和温度传感器的设计尺寸,阐述了封装过程,分析了FBG传感器的应变和温度传感机理,开发了基于体相位光栅和线阵光电探测器的光谱检测解调系统.搭建了加速度试验装置,并按照GJB150.15A“加速度试验”要求和方法对选取的FBG应变和温度传感器进行了加速度性能测试.试验结果表明:在加速度试验前后的2 min性能测试