论文部分内容阅读
针对无指针式表盘的数字判读问题,提出一种基于Zernike矩和粗集预处理的神经网络数字识别方法。该方法首先利用Zernike矩的旋转不变性特征提取数字图像特征,再对所提取的Zernike矩进行基于粗集的特征约简,约简后的信息输入到训练好的神经网络进行识别。通过实际的表盘分割截取的带旋转的数字识别中试验,结果表明该方法具有识别率高,速度快的特点,具有较高的实时价值。