论文部分内容阅读
本文基于深度卷积神经网络和融合图像提出了一种引入投影权值归一化的立体图像质量评价方法.首先基于人眼双目竞争现象,提出对经过Gabor滤波后的左右视点图像进行彩色融合,从而得到单幅融合图像.卷积神经网络的输入即为预处理后的融合图像,通过卷积层自主对图像特征进行提取,采用池化层对特征信息降维,保留显著特征且减小网络计算复杂度;采用Re LU非线性激活函数缓解梯度消失,有效缓解了网络过拟合问题;网络引入数据批量归一化来规范各层输入数据的分布,引入投影权值归一化来保证权值参数的量级相同,有效地提升了算法的性