论文部分内容阅读
针对复杂背景环境下的人脸检测,提出了一种基于改进AdaBoost的新方法。首先对人脸进行Haar-like特征的提取,然后使用基于最大散度差的鉴别准则对人脸高维特征进行降维。通过预设最大误报率和最小通过率及与前向搜索相结合的方法选择最佳弱分类器。在级联结构后几层的强分类器中,使用PCA、LDA与AdaBoost相融合的方法,去除非人脸区域,有效地检测出人脸。实验仿真结果验证了该方法的有效性。