论文部分内容阅读
针对原始动态自适应差分进化(SADE)算法局部搜索能力弱和寻优精度低的问题,提出一种求解动态优化问题的邻域搜索差分进化(NSDE)算法。通过引入邻域搜索机制,在划分种群最优个体的邻域空间范围内产生候选解,选取候选解集合中的最优解并对种群最优个体进行迭代,增强算法局部搜索能力。在传统基于距离的排斥方案中,引入hill-valley函数追踪邻近峰,提高算法寻优精度。实验结果表明,与SADE、人工免疫网络动态优化、多种群竞争差分进化和改进差分进化算法相比,NSDE算法在49个测试问题中分别有28、38、2