论文部分内容阅读
扩展目标高斯混合概率假设密度(Extended Target Gaussian Mixture Probability Hypothesis Density,ET-GMPHD)跟踪算法是扩展目标跟踪领域内最为重要的跟踪算法之一。然而当多个目标邻近时,该算法的状态估计精度降低,这是由于距离-Kmeans++(Distance Partitioning-Kmeans++,DP-Kmeans++)量测集划分算法无法输出正确的结果所导致。为解决该问题,提出了改进的DP-Kmeans++量测集划分算法,利用目