论文部分内容阅读
针对Apriori算法在挖掘超大规模数据集时存在的效率低下问题,在数据集分块和事务数据库布尔化映射基础上,提出一种直接利用布尔矩阵向量运算挖掘频繁集的并行频繁集挖掘算法(PFIM)。仿真实验分析表明,PFIM算法比Apriori算法的挖掘时间缩短了近90%,该方法可用于挖掘超大规模数据库,具有良好的并行性和可伸缩性。