Wormholelike mesoporous carbon supported PtRu catalysts toward methanol electrooxidation

来源 :能源化学 | 被引量 : 0次 | 上传用户:lbx5000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Wormholelike mesoporous carbons (WMCs) with three different pore diameters (Dp),namely WMC-F7 (Dp =8.5 nm),WMC-F30 (Dp=4.4nm),and WMC-F0 (Dp=3.1 nm) are prepared via a modified sol-gel process.Then PtRu nanoparticles with the panicle size (dpt) of ~3.2 nm supported on WMCs are synthesized with a modified pulse microwave-assisted polyol method.It is found that the pore diameter of WMCs plays an important role in the electrochemical activity of PtRu toward alcohol electrooxidation reaction.PtRu/WMC-F7 with Dp > 2dpt exhibits the largest electrochemical surface area (ESA) and the highest activity toward methanol electrooxidation.With the decrease in Dp,PtRu/WMC-F30 and PtRu/WMC-F0 have much lower ESA and electrochemical activity,especially for the isopropanol electrooxidation with a larger molecular size.When Dp is more than twice dpt,the mass transfer of reactants and electrolyte are easier,and thus more PtRu nanoparticles can be utilized and the catalysts activity can be enhanced.
其他文献
Nitrogen fixation is one of the most important and challenging process in production of ammonia at am-bient temperature. We have first performed density function theory to propose the edge of Janus MoSSe (EJM) monolayer as a potential catalyst for nitroge
Organometal halide perovskites have recently emerged with a huge potential for photovoltaic applica-tions. Moreover, preparation of high-quality perovskite crystals with controlled morphology is of great significance for the fundamental studies such as op
In this paper In2O3 nanoshells have been synthesized via a facile hydrothermal approach.The nanoshells can be completely cracked into pony-size nanocubes by annealing,which are then used as a support of Pt catalyst for methanol and ethanol electrocatalyti
Lithium-sulfur (Li-S) batteries have been recognized as promising substitutes for current energy-storage technologies owing to their exceptional advantages in very high-energy density and excellent material sustainability.The cathode with high sulfur area
One-dimensional nano-structured materials have attracted attention due to its unique properties afforded such as the across-linked structures and large aspect ratios. In this work, one-dimensional CoSe@N-doped carbon nanofibers (CoSe@NC NFs) are successfu
One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR).Here we report Polyaniline (PANI) based micro/nanomaterials with or without t
Organometal halide perovskite based solar cells have emerged as one of the most promising candidates for low-cost and high-efficiency solar cell technologies.Here a Vapor Transfer Method (VTM) is used to fabricate high quality perovskite thin films in a b
2D nanosheets such as graphene,silicene,phosphorene,metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties.However,the serious restacking and aggregation
Lithium sulfide (Li2S) provides a promising route for lithium storage due to high theoretical specific capacity (1166 mAh g-1).The electrochemical performance of Li2S can be significantly enhanced by forming Li2S-carbon composites with the introduction of
Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolution reactions is desirable.Herein,cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbon nanotubes (Co@NSCNT) were prepared by a facile pyrol