论文部分内容阅读
噪声可学习性理论指出,有监督学习方法的性能会受到训练样本标记噪声的严重影响.然而,已有相关理论研究仅针对二类分类问题.致力于探究结构化学习问题受噪声影响的规律性.首先,注意到在结构化学习问题中,标注数据的噪声会在训练过程中被放大,使得训练过程中标记样本的噪声率高于标记样本的错误率.传统的噪声可学习性理论并未考虑结构化学习中的这一现象,从而低估了问题的复杂性.从结构化学习问题的噪声放大现象出发,提出了新的结构化学习问题的噪声可学习性理论.在此基础上,提出了有效训练数据规模的概念,这一指标可用于在实践中描述噪