论文部分内容阅读
在多模型控制中,局部模型大多数是基于线性模型,其数量和精度影响多模型控制的效果。提出一种基于RBF神经网络的非线性模型辨识算法,采用G.B.Sentoni等人提出的非线性模型结构,利用径向基函数(Radial Basis Function,RBF)神经网络的逼近能力,实现热力系统非线性模型辨识。在RBF神经网络的学习过程中,根据性能函数调节学习率,可以加快学习的收敛过程。最后进行了仿真验证,基于2个局部非线性模型的多模型控制系统与基于5个局部线性模型的多模型控制系统相比,减少了切换时的震荡,控制精度有所提