论文部分内容阅读
影响砾石充填防砂井产能的因素很多。关系非常复杂.常规理论方法难以建立准确、适用的预测模型。为此,对防砂井产能的主要影响因素进行分析。引入支持向量机方法,与自然产能比方法相结合。建立了防砂井产能预测模型。该模型通过有限经验数据的学习。能够导出防砂前后采油指数与其影响因素的非线性关系。分别使用支持向量机模型和BP神经网络模型对砾石充填防砂井产能进行预测对比结果表明,支持向量机模型有着更高的预测精度.在小样本的模式识别方面,有着自身独特的优势。