基于机器学习的汽油加氢裂化辛烷值损失预测和脱硫优化

来源 :科学技术与工程 | 被引量 : 0次 | 上传用户:suriq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
辛烷值损失的准确预测有助于汽油炼制过程的优化与控制,以达到更好的脱硫效果.原油的加氢脱硫是一个十分复杂的物化反应过程,对于该过程中的参数控制多依赖于工人的经验,因此基于大数据建立辛烷值损失预测模型可以用于优化脱硫效果,从而提高产品质量,减轻工人的劳动强度,具有十分重大的实际意义.采用单因素分析、方差过滤、随机森林等方法进行了特征筛选,最后基于逻辑回归、BP(back propagation)神经网络以及支持向量机(support vector machine,SVM)三种机器学习算法构建了辛烷值损失预测模型.实验结果表明,基于SVM建立的辛烷值损失预测模型精度达到了 98.24%,优于逻辑回归和BP神经网络预测模型.将该模型应用于脱硫优化,在生成汽油的硫含量达标的情况下,获得最优的控制变量组合,达到将辛烷值损失降到最低的目的.
其他文献
风机是传统行业的主要耗能原件.对风机进行优化设计,提升风机的静压效率对于节能环保具有重要的意义.迄今为止风机的优化设计更多聚焦叶轮结构,对于轮盖结构及间隙对风机性能影响的研究却很少.为提高一款工业离心式风机气动性能,通过实验和数值模拟的方法研究了轮盖结构与间隙以及前安装角对风机性能的影响,并对其进行了优化设计.首先,对风机进行测试,获得了风机的性能参数,研究了风机上盖板结构对风机性能的影响,发现平整上盖板能减少局部损失,提高效率.其次,通过数值模拟方法对风机进行参数敏感性试验,依据计算结果发现改变叶轮叶片
滑坡敏感性制图是灾害防治较为有效的软措施之一.以渝东北三峡库区为例,利用频率比法和投影寻踪模型绘制滑坡敏感性图.首先,针对研究区的地质环境特征建立滑坡敏感性评价指标,并利用频率比法分析历史滑坡与指标之间的空间关系.其次,利用投影寻踪模型确定评价指标的最优向量,将频率比分析结果与最优向量进行加权计算得到滑坡敏感性指数,并将其划分为高敏感区、较高敏感区、中敏感区、较低敏感区和低敏感区.最后,利用接受者操作特征(receiver operating characteristics,ROC)曲线验证了滑坡敏感性制
储能系统在微电网保证电力系统运行稳定运行中起到了关键的作用.因可再生能源发电具有许多不确定因素,从而引发的随机性以及波动性对微电网并网运行产生恶劣的影响.针对以上问题,为提高微电网并网的电能质量,减小直流(direct current,DC)母线电压的波动和冲击,提出一种由超级电容与蓄电池组成的改进自抗扰控制(active disturbance rejection control,ADRC)综合储能控制系统,在控制储能系统的双向DC/DC变换器的工作状况的基础上,实现储能控制单元的恒流充放电,从而弥补传
针对传统电气化铁路中无功、谐波、负序等电能质量问题和电分相问题,并考虑牵引负荷的冲击性,提出一种由多端口交直交(AC/DC/AC)变流器、牵引变压器及超级电容储能构成的牵引供电系统及控制策略.牵引变压器的二次侧分别通过两个整流端口与变流器中的单相整流器相连,将整流器的直流母线并联引出,变流器的逆变端口连接在牵引网上;超级电容通过Buck/Boost变换器并联至直流母线.整流器采用直流电压外环、网侧电流内环的双环控制,在稳定直流母线电压的同时解决电网侧电能质量问题.输出侧逆变器采用电压有效值外环,瞬时值内环
为探究不同润湿性表面单气泡动力学特性,通过引入差分方法的单组分多相格子Boltzmann模型,耦合能量方程构成了气液相变模型,模拟了不同润湿性表面单气泡形成过程周围流场与温度场细观,阐述了气泡生长脱离机理;研究了润湿性、过热度、有限热源长度对气泡动力学影响.结果表明,在相同过热度下,疏水壁面气泡生长速度大于亲水壁面.气泡脱离直径和脱离时间随着接触角增加而增加,亲水表面气泡脱离直径随着有限热源长度增加而增加,脱离时间随长度增加而减小.疏水表面气泡脱离直径与有限热源长度无关,脱离时间随加热长度增加小幅度减小.
为研究某摩托车用电机环形水套流场特性及电机温度场分布,采用STAR-CCM+对某摩托车用电机环形水套的冷却循环进行数值模拟,研究了不同水套结构、水泵转速及环氧树脂填充对水套流场特性及电机温度分布的影响.结果表明,原水套结构流量分配不均匀导致电机线圈温度较高且存在较大的温度梯度.优化后长、短支路流量分配均匀,冷却液的利用率提高,线圈温度比原方案降低2℃.在优化后的水套基础上提升水泵转速、填充环氧树脂、填充环氧树脂并提升转速,线圈温度分别可比原方案降低5、13、16℃.从优化散热效果来说,优化电机水套流场<优
针对配电网发生故障后的快速供电恢复需求,提出了一种适应第五代移动通信技术(5th generation mobile communi-cation technology,5G)的配电网分布式供电恢复策略.该策略通过可靠性模型分析与深度搜索算法为负荷节点发出供电恢复请求提供依据,从而将整个非故障停电区划分为多个独立的转供区域.联络开关节点则根据收到的供电恢复请求集合,以最大范围恢复重要负荷供电为目标,构建转供区域内的负荷优化模型,并将其转换为混合整数二阶锥问题进行求解.停电负荷节点与联络开关节点之间通过多轮
石英增强型光声光谱(quartz enhanced photoacoustic spectroscopy,QEPAS)检测技术在痕量气体浓度检测方面具有灵敏度高、可靠性好、系统体积小等优势.以二氧化碳为目标气体,深入研究不同气体流量对QEPAS检测系统精度的影响.通过Fluent ANSYS仿真软件对气体流场进行分析,完成对不同流量情况下气室内压强和流速的仿真.通过基于QEPAS的CO2气体检测系统的实验,研究了气室压强对气体浓度检测的影响.实验结果表明通过控制气体流量使得气室内的压强为1.08×10-1
为保障深水油气田流动安全,需注入乙二醇以抑制水合物产生,以防深水管道及设备发生堵塞,在对乙二醇进行循环再生过程中,乙二醇再生工艺能耗占比最大,为节能降耗,需对乙二醇脱水再生工艺进行参数优选.采用软件Aspen Plus建立工艺模型,结合计算结果,对比分析关键工艺参数.结果表明,在再生塔进料温度为90℃,再生塔操作压力为50 kPa,再沸器操作压力为50 kPa,塔釜温度为127℃,冷凝器操作压力为25 kPa,塔顶温度为65℃,回流比为0.04,理论塔板数为19,进料位置为17时,乙二醇损耗量和能耗最低.
燃气轮机的一次调频能力对于电网频率的稳定十分重要.针对燃气轮机一次调频的控制问题,提出了基于多 目标遗传算法的自抗扰控制策略.首先提出了 一种基于输出量直接反馈的自抗扰控制结构,并推导出其参数稳定域的计算公式.在介绍NSGA-Ⅲ多目标遗传算法的基础上,提出了基于多个控制性能指标的多目标参数优化流程,并将该方法应用于燃气轮机机组的一次调频控制策略设计中.仿真结果表明,提出的基于多 目标遗传算法的自抗扰控制策略在保证鲁棒性的前提下能够提高燃气轮机机组一次调频的性能,显示了很好的应用前景.