论文部分内容阅读
Synchronization is of importance in both fundamental and applied physics, but its demonstration at the micro/nanoscale is mainly limited to low-frequency oscillations such as mechanical resonators. We report the synchronization of two coupled optical microresonators, in which the high-frequency resonances in the optical domain are aligned with reduced noise. It is found that two types of synchronization regimes emerge with either the first- or second-order transition, both presenting a process of spontaneous symmetry breaking. In the second-order regime, the synchronization happens with an invariant topological character number and a larger detuning than that of the first-order case. Furthermore, an unconventional hysteresis behavior is revealed for a time-dependent coupling strength, breaking the static limitation and the temporal reciprocity. The synchronization of optical microresonators offers great potential in reconfigurable simulations of many-body physics and scalable photonic devices on a chip.