论文部分内容阅读
针对煤矿巷道支护专家系统知识内容有限、知识难以融合共享、无法从非结构化数据中挖掘相关知识等问题,构建了煤矿巷道支护领域知识图谱。首先通过设计领域概念、关系及属性对煤矿巷道支护领域知识建模;然后从煤矿巷道支护领域结构化、半结构化、非结构化数据源获取知识,并基于深度学习模型BI-LSTM-CRF进行实体识别;最后利用图数据库Neo4j存储煤矿巷道支护领域知识,形成煤矿巷道支护领域知识图谱。煤矿巷道支护领域知识图谱可进一步提升煤矿巷道支护设计和管理效率,为煤矿巷道支护智能化管理提供知识支持。