论文部分内容阅读
针对传统图像结构图表示特征不稳定的问题,提出一种基于复杂网络模型的图像表示与识别方法。以图像的关键点作为网络节点,构建复杂网络初始模型。利用最小生成树分解方法对初始网络模型进行动态演化,提取不同演化阶段下的网络特征,实现对图像结构特征的描述。该方法直接利用图像关键点之间的空间分布信息,结构简单。分类与聚类实验结果表明,与传统基于边权值阈值的演化方法相比,该方法能更准确地描述图像的结构。