论文部分内容阅读
为了提高电力变压器故障诊断的准确率,提出一种基于改进粒子群算法(PSO)优化SVM的变压器故障诊断方法。在对变压器故障进行诊断时采用支持向量机(SVM)与油中溶解气体分析(DGA)相结合的方法,利用PSO对SVM故障诊断模型进行参数寻优,并通过模拟退火算法(SA)改进PSO以提高PSO算法的全局搜索能力。对电力变压器故障诊断的实例分析结果表明,该方法不仅能够有效地进行变压器故障诊断,而且准确率高于传统的变压器故障诊断方法,更适合在变压器故障诊断中应用。